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Preface 

Digital modulation techniques are essential to many digital communication 
systems, whether it is a telephone system, a mobile cellular communication 
system, or a satellite communication system. In the past twenty years or so, 
research and development in digital modulation techniques have been very active 
and have yielded many promising results. However, these results are scattered all 
over the literature. As a result, engineers and students in this field usually have 
difficulty locating particular techniques for applications or for research topics. 

This book provides readers with complete, up-to-date information of all 
modulation techniques in digital communication systems. There exist numerous 
textbooks of digital communications, each of them containing one or more 
chapters of digital modulation techniques covering either certain types of 
modulation, or only principles of the techniques. There are also a few books 
specializing in certain modulations. This book presents principles and applications 
information of all currently used digital modulation techniques, as well as new 
techniques now being developed. For each modulation scheme, the following 
topics are covered: historical background, operation principles, symbol and bit 
error performance (power efficiency), spectral characteristic (bandwidth 
efficiency), block diagrams of modulator, demodulator, carrier recovery (if any), 
clock recovery, comparison with other schemes, and applications. After we fully 
understand the modulations and their performances in the AWGN channel, we will 
discuss their performances in rnultipath-fading channels. 

Organization of the book 

This book is organized into 10 chapters. Chapter 1 is an introduction for those 
requiring basic knowledge about digital communication systems, and modulation 
methods. 

Chapter 2 is about baseband signal modulation that does not involve a carrier. 

... 
X l l l  
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It is usually called baseband signal formatting or line coding. Traditionally the 
term modzrlation refers to "impression of message on a carrier," however, if we 
widen the definition to "impression of message on a transmission medium," this 
format~ing is also a kind of modulation. Baseband modulation is important not 
only because it is used in short distance data communications, magnetic recording. 
optical recording, etc., but also because it is the front end of bandpass 
modulations. 

Chapters 3-4 cover classical frequency shift keying (FSK) and phase shift 
keying (PSK) techniques, including coherent and noncoherent. These techniques 
are currently used in many digital communication systems, such as cellular digital 
telephone systems, and satellite communication systems. 

Chapters 5-7 are advanced phase modulation techniques which include 
minimum shift keying (MSK), continuous phase modulation (CPM), and multi-h 
phase modulation (MHPM). These techniques are the research results of recent 
years, and some of them are being used in the most advanced systems, for 
example, MSK has been used in NASA's Advanced Communications Technology 
Satellite (ACTS) launched in 1993, and the others are being perfected for future 
applications. 

Chapter 8 is about quadrature amplitude modulation (QAM). QAM schemes 
are widely used in telephone modems. For instance, CCITT (Consultative 
Committee for International Telephone and Telegraph) recommended V.29 and 
V.33 modems use 16- and 128-QAM, reaching speeds of 9600 bps and 14400 bps 
respectively, over four-wire leased telephone lines. 

Chapter 9 covers nonconstant-envelope bandwidth-efficient modulation 
schemes. We will study eight schemes, namely, QBL, QORC, SQORC, QOSRC, 
IJF-OQPSK, TSI-OQPSK, SQAM and Q~PSK. These schemes improve the power 
spectral density with little loss in error probability. They are primarily designed for 
satellite communications. 

Chapter 10 first briefly introduces characteristics of channels with fading and 
multipath propagation. Then all modulations discussed in Chapters 2-8 are 
examined under the fading-muhi path environment. 

Appendixes A and B are basic knowledge of signal spectra and classical 
signal detection and estimation theory. 

This book can be used as a reference book for engineers and researchers. I t  
also can be used as a textbook for graduate students. The material in the book can 
be covered in a half-year course. For short course use, the instructor may select 
relevant chapters to cover. 
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Chapter 1 

Introduction 

In this chapter we briefly discuss the role of modulation in a typical digital com- 
munication system, basic modulation methods, and criteria for choosing modulation 
schemes. Also included is a brief description of various communication channels, 
which will serve as a background for the later discussion of the modulation schemes. 

1.1 DIGITAL COMMUNICATION SYSTEMS 

Figure 1.1 is the block diagram of a typical digital communication system. The mes- 
sage to be sent may be fiom an analog source (e.g., voice) or fiom a digital source 
(e.g., computer data). The analog-to-digital (AID) converter samples and quantizes 
the analog signal and represents the samples in digital form (bit 1 or 0). The source 
encoder accepts the digital signal and encodes it into a shorter digital signal. This is 
called source encoding, which reduces the redundancy hence the transmission speed. 
This in turn reduces the bandwidth requirement of the system. The channel encoder 
accepts the output digital signal of the source encoder and encodes it into a longer 
digital signal. Redundancy is deliberately added into the coded digital signal so that 
some of the errors caused by the noise or interference during transmission through 
the channel can be corrected at the receiver. Most often the transmission is in a high- 
frequency passband, the modulator thus impresses the encoded digital symbols onto 
a carrier. Sometimes the transmission is in baseband, the modulator is a baseband 
modulator, also called formator, which formats the encoded digital symbols into a 
waveform suitable for transmission. Usually there is a power amplifier following 
the modulator. For high-frequency transmission, modulation and demodulation are 
usually performed in the intermediate frequency (IF). If this is the case, a frequency 
up-convertor is inserted between the modulator and the power amplifier. If the IF is 
too low compared with the carrier frequency, several stages of carrier frequency con- 
versions are needed. For wireless systems an antenna is the final stage of the trans- 
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Channel v 
Analog 
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Digital L-b-1 
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Figure 1 . 1  Block diagram of a typical digital communication system. 

_, Power 
amplifier 

mitter. The transmission medium is usually called the channel, where noise adds to 
the signal and fading and attenuation effects appear as a complex multiplicative fac- 
tor on the signal. The term noise here is a wide-sense term which includes all kinds 
of random electrical disturbance from outside or from within the system. The chan- 
nel also usually has a limited frequency bandwidth so that it can be viewed as a filter. 
In the receiver, virtually the reverse signal processing happens. First the received 
weak signal is amplified (and down-converted if needed) and demodulated. Then 
the added redundancy is taken away by the channel decoder and the source decoder 
recovers the signal to its original form before being sent to the user. A digital-to- 
analog (DIA) converter is needed for analog signals. 

The block diagram in Figure I .  1 is just a typical system configuration. A real 
system configuration could be more complicated. For a multiuser system, a mul- 
tiplexing stage is inserted before modulator. For a multistation system, a multiple 
access control stage is inserted before the transmitter. Other features like frequency 
spread and encryption can also be added into the system. A real system could be 
simpler too. Source coding and channel coding may not be needed in a simple sys- 
tem. In fact, only the modulator, channel, demodulator, and amplifiers are essential 
in all communication systems (with antennas for wireless systems). 

For the purpose of describing modulation and demodulation techniques and an- 
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n(t) 
additive 
noise and 

- 

interference 

Channel 

Figure 1.2 Digital communication system model for modulation and demodulation 

Modulator ',' Wter h(t) @ @?-d-l Demodulator 

alyzing their performance, the simplified system model shown in Figure 1.2 will be 
often used. This model excludes irrelevant blocks with regard to modulation so that 
relevant blocks stand out. However, recently developed modem techniques combine 
modulation and channel coding together. In these cases the channel encoder is part 
of the modulator and the channel decoder is part of the demodulator. From Figure 
1.2, the received signal at the input of the demodulator can be expressed as 

where * denotes convolution. In Figure 1.2 the channel is described by three ele- 
ments. The first is the channel filter. Because of the fact that the signal s ( t )  from the 
modulator must pass the transmitter, the channel (transmission medium) and the re- 
ceiver before it can reach the demodulator, the channel filter therefore is a composite 
filter whose transfer function is 

where HT( f ), Hc( f ), and HR(  f )  are the transfer function of the transmitter, the 
channel, and the receiver, respectively. Equivalently, the impulse response of the 
channel filter is 

where hT(t), hc(t), and hR(t)  are the impulse responses of the transmitter, the chan- 
nel, and the receiver, respectively. The second element is the factor A ( t )  which is 
generally complex. This factor represents fading in some types of channels, such as 
mobile radio channel. The third element is the additive noise and interference term 
n ( t ) .  We will discuss fading and noise in more detail in the next section. The channel 
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model in Figure 1.2 is a general model. It may be simplified in some circumstances, 
as we will see in the next section. 

1.2 COMMUNICATION CHANNELS 

Channel characteristic plays an important role in studying, choosing, and designing 
modulation schemes. Modulation schemes are studied for different channels in order 
to know their performance in these channels. Modulation schemes are chosen or 
designed according to channel characteristic in order to optimize their performance. 
In this section we discuss several important channel models in communications. 

1.2.1 Additive White Gaussian Noise Channel 

Additive white Gaussian noise (AWGN) channel is a universal channel model for 
analyzing modulation schemes. In this model, the channel does nothing but add a 
white Gaussian noise to the signal passing through it. This implies that the channel's 
amplitude frequency response is flat (thus with unlimited or infinite bandwidth) and 
phase frequency response is linear for all frequencies so that modulated signals pass 
through it without any amplitude loss and phase distortion of frequency components. 
Fading does not exist. The only distortion is introduced by the AWGN. The received 
signal in ( I .  I ) is simplified to 

where n( t )  is the additive white Gaussian noise. 
The whiteness of n( t )  implies that it is a stationary random process with a flat 

power spectral density (PSD) for all frequencies. It is a convention to assume its 
PSD as 

This implies that a white process has infinite power. This of course is a mathemat- 
ical idealization. According to the Wiener-Khinchine theorem, the autocorrelation 
function of the AWGN is 

where & ( T )  is the Dirac delta function. This shows the noise samples are uncorrelated 
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no matter how close they are in time. The samples are also independent since the 
process is Gaussian. 

At any time instance, the amplitude of n ( t )  obeys a Gaussian probability density 
function given by 

where ,v is used to represent the values of the random process n ( t )  and o2 is the 
variance of the random process. It is interesting to note that a2 = cx, for the AWGN 
process since a2 is the power of the noise, which is infinite due to its "whiteness." 

However, when r ( t )  is correlated with a orthonormal function @(t) ,  the noise in 
the output has a finite variance. In fact 

where 

and 

The variance of n is 
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Then the probability density function (PDF) of n can be written as 

This result will be frequently used in this book. 
Strictly speaking, the AWGN channel does not exist since no channel can have an 

infinite bandwidth. However, when the signal bandwidth is smaller than the channel 
bandwidth, many practical channels are approximately an AWGN channel. For ex- 
ample, the line-of-sight (LOS) radio channels, including fixed terrestrial microwave 
links and fixed satellite links, are approximately AWGN channels when the weather 
is good. Wideband coaxial cables are also approximately AWGN channels since there 
is no other interference except the Gaussian noise. 

In this book, all modulation schemes are studied for the AWGN channel. The 
reason of doing this is two-fold. First, some channels are approximately an AWGN 
channel, the results can be used directly. Second, additive Gaussian noise is ever 
present regardless of whether other channel impairments such as limited bandwidth, 
fading, multipath, and other interferences exist or not. Thus the AWGN channel is the 
best channel that one can get. The performance of a modulation scheme evaluated in 
this channel is an upper bound on the performance. When other channel impairments 
exist, the system performance will degrade. The extent of degradation may vary for 
different modulation schemes. The performance in AWGN can serve as a standard 
in evaluating the degradation and also in evaluating effectiveness of impairment- 
combatting techniques. 

1.2.2 Bandlimited Channel 

When the channel bandwidth is smaller than the signal bandwidth, the channel is 
bandlimited. Severe bandwidth limitation causes intersymbol interference (ISI) (i.e., 
digital pulses will extend beyond their transmission duration (symbol period Ts) )  and 
interfere with the next symbol or even more symbols. The IS1 causes an increase 
in the bit error probability (Pb) or bit error rate (BER), as it is commonly called. 
When increasing the channel bandwidth is impossible or not cost-efficient, channel 
equalization techniques are used for combatting ISI. Throughout the years, numerous 
equalization techniques have been invented and used. New equalization techniques 
are appearing continuously. We will not cover them in this book. For introductory 
treatment of equalization techniques, the reader is referred to [ I .  Chapter 6 )  or any other 
communication systems books. 
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1.2.3 Fading Channel 

Fading is a phenomena occurring when the amplitude and phase of a radio signal 
change rapidly over a short period of time or travel distance. Fading is caused by in- 
terference between two or more versions of the transmitted signal which arrive at the 
receiver at slightly different times. These waves, called multipath waves, combine 
at the receiver antenna to give a resultant signal which can vary widely in amplitude 
and phase. If the delays of the multipath signals are longer than a symbol period, 
these multipath signals must be considered as different signals. In this case, we have 
individual multipath signals. 

In mobile communication channels, such as terrestrial mobile channel and satel- 
lite mobile channel, fading and multipath interference are caused by reflections from 
surrounding buildings and terrains. In addition, the relative motion between the 
transmitter and receiver results in random frequency modulation in the signal due 
to different Doppler shifts on each of the multipath components. The motion of 
surrounding objects, such as vehicles, also induces a time-varying Doppler shift on 
multipath component. However, if the surrounding objects move at a speed less than 
the mobile unit, their effect can be ignored [2]. 

Fading and multipath interference also exist in fixed LOS microwave links [3]. 

On clear, calm summer evenings, normal atmospheric turbulence is minimal. The 
troposphere stratifies with inhomogeneous temperature and moisture distributions. 
Layering of the lower atmosphere creates sharp refractive index gradients which in 
turn create multiple signal paths with different relative amplitudes and delays. 

Fading causes amplitude fluctuations and phase variations in received signals. 
Multipath causes intersymbol interference. Doppler shift causes carrier frequency 
drift and signal bandwidth spread. All these lead to performances degradation of 
modulations. Analysis of modulation performances in fading channels is given in 
Chapter 10 where characteristics of fading channels will be discussed in more detail. 

1.3 BASIC MODULATION METHODS 

Digital modulation is a process that impresses a digital symbol onto a signal suitable 
for transmission. For short distance transmissions, baseband modulation is usually 
used. Baseband modulation is often called line coding. A sequence of digital sym- 
bols are used to create a square pulse waveform with certain features which represent 
each type of symbol without ambiguity so that they can be recovered upon reception. 
These features are variations of pulse amplitude, pulse width, and pulse position. 
Figure 1.3 shows several baseband modulation waveforms. The first one is the non- 
return to zero-level (NRZ-L) modulation which represents a symbol 1 by a positive 
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(b) Unipolar RZ 

(c) Bi-a-L (Manchester) 

Figure 1.3 Baseband digital modulation examples. 

square pulse with length T and a symbol 0 by a negative square pulse with length T. 
The second one is the unipolar return to zero modulation with a positive pulse of T/2 
for symbol I and nothing for 0. The third is the biphase level or Manchester, after 
its inventor, modulation which uses a waveform consisting of a positive first-half T 
pulse and a negative second-half T pulse for 1 and a reversed waveform for 0. These 
and other baseband schemes will be discussed in detail in Chapter 2. 

For long distance and wireless transmissions, bandpass modulation is usually 
used. Bandpass modulation is also called carrier modulation. A sequence of dig- 
ital symbols are used to alter the parameters of a high-frequency sinusoidal signal 
called carrier. It is well known that a sinusoidal signal has three parameters: am- 
plitude, frequency, and phase. Thus amplitude modulation, frequency modulation, 
and phase modulation are the three basic modulation methods in passband modula- 
tion. Figure 1.4 shows three basic binary carrier modulations. They are amplitude 
shift keying (ASK), frequency shift keying (FSK), and phase shift keying (PSK). In 
ASK, the modulator puts out a burst of carrier for every symbol 1, and no signal 
for every symbol 0. This scheme is also called on-off keying (OOK). In a general 
ASK scheme, the amplitude for symbol 0 is not necessarily 0. In FSK, for symbol 
I a higher frequency burst is transmitted and for symbol 0 a lower frequency burst 
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Figure 1.4 Three basic bandpass modulation schemes. 

is transmitted, or vice versa. In PSK, a symbol I is transmitted as a burst of carrier 
with 0 initial phase while a symbol 0 is transmitted as a burst of carrier with 180' 
initial phase. 

Based on these three basic schemes, a variety of modulation schemes can be de- 
rived from their combinations. For example, by combining two binary PSK (BPSK) 
signals with orthogonal carriers a new scheme called quadrature phase shift keying 
(QPSK) can be generated. By modulating both amplitude and phase of the carrier, 
we can obtain a scheme called quadrature amplitude modulation (QAM), etc. 

1.4 CRITERIA OF CHOOSING MODULATION SCHEMES 

The essence of digital modem design is to efficiently transmit digital bits and recover 
them from corruptions from the noise and other channel impairments. There are 
three primary criteria of choosing modulation schemes: power efficiency, bandwidth 
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efficiency, and system complexity. 

1.4.1 Power Efficiency 

The bit error rate, or bit error probability of a modulation scheme is inversely related 
to Eb/S, ,  the bit energy to noise spectral density ratio. For example, Pb of ASK in 
the AWGN channel is given by 

(I. 10) 

where Eb is the average bit energy, No is the noise power spectral density (PSD), and 
Q(s)  is the Gaussian integral, sometimes referred to as the Q-function. It is defined 
as 

which is a monotonically decreasing function of x. Therefore the power efficiency 
of a modulation scheme is defined straightforwardly as the required Eb/Ar0 for a 
certain bit error probability (Pb) over an AWGN channel. Pb = lo-' is usually used 
as the reference bit error probability. 

1 A.2 Bandwidth Efficiency 

The determination of bandwidth efficiency is a bit more complex. The bandwidth 
efficiency is defined as the number of bits per second that can be transmitted in 
one Hertz of system bandwidth. Obviously it depends on the requirement of system 
bandwidth for a certain modulated signal. For example, the one-sided power spectral 
density of an ASK signal modulated by an equiprobable independent random binary 
sequence is given by 

and is shown in Figure 1.5, where T is the bit duration, A is the carrier amplitude, 
and f, is the carrier frequency. From the figure we can see that the signal spectrum 
stretches from -m to OG. Thus to perfectly transmit the signal an infinite system 
bandwidth is required, which is impractical. The practical system bandwidth require- 
ment is finite, which varies depending on different criteria. For example, in Figure 
1.5, most of the signal energy concentrates in the band between two nulls, thus a 
null-to-null bandwidth requirement seems adequate. Three bandwidth efficiencies 
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Figure I .5 Power spectral density of ASK. 

used in the literature are as follows: 
Nyquist Bandwidth Efficiency-Assuming the system uses Nyquist (ideal rec- 

tangular) filtering at baseband, which has the minimum bandwidth required for in- 
tersyrnbol interference-free transmission of digital signals, then the bandwidth at 
baseband is 0.5RS, Rs is the symbol rate, and the bandwidth at carrier frequency 
is W = R,. Since R, = Rb/ log, M, Rb = bit rate, for M-ary modulation, the 
bandwidth efficiency is 

Null-to-Null Bandwidth Efficiency-For modulation schemes that have power 
density spectral nulls such as the one of ASK in Figure 1.5, defining the bandwidth 
as the width of the main spectral lobe is a convenient way of bandwidth definition. 

Percentage Bandwidth Efficiency-If the spectrum of the modulated signal 
does not have nulls, as in general continuous phase modulation (CPM), null-to-null 
bandwidth no longer exists. In this case, energy percentage bandwidth may be used. 
Usually 99% is used, even though other percentages (e.g., 90%, 95%) are also used. 

1.4.3 System Complexity 

System complexity refers to the amount of circuits involved and the technical dif- 
ficulty of the system. Associated with the system complexity is the cost of manu- 
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facturing, which is of course a major concern in choosing a modulation technique. 
Usually the demodulator is more complex than the modulator. Coherent demodula- 
tor is much more complex than noncoherent demodulator since carrier recovery is 
required. For some demodulation methods, sophisticated algorithms like the Viterbi 
algorithm is required. All these are basis for complexity comparison. 

Since power efficiency, bandwidth efficiency, and system complexity are the 
main criteria of choosing a modulation technique, we will always pay attention to 
them in the analysis of modulation techniques in the rest of the book. 

1.5 OVERVIEW OF DIGITAL MODULATION SCHEMES 

To provide the reader with an overview, we list the abbreviations and descriptive 
names of various digital modulations that we will cover in Table 1 .1  and arrange 
them in a relationship tree diagram in Figure 1.6. Some of the schemes can be derived 
from more than one "parent" scheme. The schemes where differential encoding can 
be used are labeled by letter D and those that can be noncoherently demodulated are 
labeled with a letter N .  All schemes can be coherently demodulated. 

The modulation schemes listed in the table and the tree are classified into two 
large categories: constant envelope and nonconstant envelope. Under constant en- 
velope class, there are three subclasses: FSK, PSK, and CPM. Under nonconstant 
envelope class, there are three subclasses: ASK, QAM, and other nonconstant enve- 
lope modulations. 

Among the listed schemes, ASK, PSK, and FSK are basic modulations, and 
MSK, GMSK, CPM, MHPM, and QAM, etc. are advanced schemes. The advanced 
schemes are variations and combinations of the basic schemes. 

The constant envelope class is generally suitable for communication systems 
whose power amplifiers must operate in the nonlinear region of the input-output 
characteristic in order to achieve maximum amplifier efficiency. An example is the 
TWTA (traveling wave tube amplifier) in satellite communications. However, the 
generic FSK schemes in this class are inappropriate for satellite application since they 
have very low bandwidth efficiency in comparison with PSK schemes. Binary FSK 
is used in the low-rate control channels of first generation cellular systems, AMPS 
(advance mobile phone service of US.) and ETACS (European total access commu- 
nication system). The data rates are 10 Kbps for AMPS and 8 Kbps for ETACS. 
The PSK schemes, including BPSK, QPSK, OQPSK, and MSK have been used in 
satellite communication systems. 

The TI?-QPSK is worth special attention due to its ability to avoid 180" abrupt 
phase shift and to enable differential demodulation. I t  has been used in digital mobile 
cellular systems, such as the United States digital cellular (USDC) system. 
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Abbreviation I Alternate Abbr. I Descriptive name 

Frequency Shift Keying (FSK) 

I BFSK 

I MFSK 

7 

OQPSK 

FSK 

-- -- - - -- - 

fi/4 Quadrature Phase ShiA Keying 
I 

Binary Frequency Shift Keying 

M-ary Frequency Shift Keying 

4PSK 

SQPSK 

Phase Shift Keying (PSK) 

PSK I Binary Phase Shift Keying 

~uadrature ~ h & e  Shift Keying 

Offset QPSK, Staggered QPSK 

MPSK I M-ary Phase Shift Keying 

SHPM 

Continuous Phase Modulations (CPM) 

I Single-h (modulation index) Phase Modulation 

MHPM 

LREC 

Multi-h Phase Modulation 

Rectangular Pulse of Length L 

CPFSK 

MSK 
- 

SMSK 

LRC 

FFSK 
- -- - - 

Serial Minimum shiAKeying 

Raised Cosine Pulse of Length L 

LSRC 

GMSK 

TFM 

Continuous Phase Frequency Shift Keying 

Minimum Shift Keying. Fast FSK 

-- . - . -- - 

~ ~ e c t r a l l ~  ~ a i s e d  Cosine Pulse of Length L 

Gaussian Minimum Shift Keying 

Tamed Frequency Modulation 

ASK 

OOK 

I QORC 1 ( Quadrature Overlapped Raised Cosine Modulation 1 

Arn~litude and Am~litudePhase modulations 

MASK 

QAM 

SQORC 1 Staggered QORC I 

ASK 

Amplitude Shift Keying (generic name) 

Binary On-Off Keying 

Nonconstant Envelope Modulations 

MAM M-ary ASK, M-ary Amplitude Modulation 

Quadrature Amplitude Modulation 

QOSRC 

Q ~ P S K  

IJF-OQPSK 

Table 1.1 Digital modulation schemes (Abbr.=Abbreviation). 

Quadrature Overlapped Squared Raised Cosine Modulation 
Quadrature Quadrature Phase Shift Keying 

Intersymbol-InterferencdJitter-Free OQPSK 

TSI-OQPSK 

SQAM 

XPSK 

7 

Two-Symbol-Interval OQPSK 

Superposed-QAM 

Crosscorrelated QPSK 
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I Digital Modulations ( 

Constant Envelope c Nonconstant Envelope n 

Solid lines indicate "can be derived fkorn" 

- - - - - - - -  Dashed lines indicate "alternatively can be derived from" 

Can be differentially encoded and decoded 

Can be noncoherently detected 

SQORC 

- QORC 

I 
I 
QOSRC 

Figure 1.6 Digital Modulation Tree. After [4J. 
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The PSK schemes have constant envelope but discontinuous phase transitions 
from symbol to symbol. The CPM schemes have not only constant envelope, but also 
continuous phase transitions. Thus they have less side lobe energy in their spectra 
in comparison with the PSK schemes. The CPM class includes LREC, LRC, LSRC, 
GMSK, and TFM. Their differences lie in their different frequencypulses which are 
reflected in their names. For example, LREC means the Frequency pulse is a rectan- 
gular pulse with a length of L symbol periods. MSK and GMSK are two important 
schemes in CPM class. MSK is a special case of CPFSK, but it also can be derived 
from OQPSK with extra sinusoidal pulse-shaping. MSK has excellent power and 
bandwidth efficiency. Its modulator and demodulator are also not too complex. MSK 
has been used in NASA's Advanced Communication Technology Satellite (ACTS). 
GMSK has a Gaussian frequency pulse. Thus it can achieve even better bandwidth 
efficiency than MSK. GMSK is used in the US cellular digital packet data (CDPD) 
system and European GSM (global system for mobile communication) system. 

MHPM is worth special attention since it has better error performance than 
single-h CPM by cyclically varying the modulation index h. 

The generic nonconstant envelope schemes, such as ASK and QAM, are gen- 
erally not suitable for systems with nonlinear power amplifiers. However QAM, 
with a large signal constellation, can achieve extremely high bandwidth efficiency. 
QAM has been widely used in modems used in telephone networks, such as computer 
modems. QAM can even be considered for satellite systems. In this case, however, 
back-off in TWWs input and output power must be provided to ensure the linearity 
of the power amplifier. 

The third class under nonconstant envelope modulation includes quite a few 
schemes. These are primarily designed for satellite applications since they have very 
good bandwidth efficiency and the amplitude variation is minimal. All of them ex- 
cept Q ~ P S K  are based on 2Ts amplitude pulse shaping and their modulator structures 
are similar to that of OQPSK. The scheme Q'PSK is based on four orthogonal car- 
riers. 
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Chapter 2 

Baseband Modulation (Line Codes) 

Baseband modulation is defined as a direct transmission without Frequency trans- 
form. It is the technology of representing digital sequences by pulse waveforms 
suitable for baseband transmission. A variety of waveforms have been proposed 
in an effort to find ones with some desirable properties, such as good bandwidth 
and power efficiency, and adequate timing information. These baseband modula- 
tion waveforms are variably called line codes, baseband formots (or waveforms), 
PCM waveforms (orformats, or codes ). PCM (pulse code modulation) refers to the 
process that a binary sequence representing a digitized analog signal is coded into 
a pulse waveform. For a data signal PCM is not needed. Therefore the terms line 
code and baseband format (or waveform) are more pertinent and the former one is 
more often used. Line codes were mainly developed in the 1960s by engineers at 
AT&T, IBM or RCA for digital transmission over telephone cables or digital record- 
ing on magnetic media [MI. Recent developments in line codes mainly concentrate 
on fiber optic transmission systems [HI I. 

In this chapter we first introduce differential coding technique which is used in 
the later part of the chapter in constructing line codes. Then we describe various basic 
line codes in Section 2.2. Their power spectral densities are discussed in Section 
2.3. The demodulation of these waveforms is in effect a detection problem of signals 
in noise. In Section 2.4 we first describe optimum detection of binary signals in 
additive white Gaussian noise (AWGN) and then apply the resultant general formulas 
to obtain expressions for bit error probabilities or bit error rates (BER) of various 
line codes. The general results can be used for any binary signal, including bandpass 
signals which will be described in later chapters. It also should be pointed out that 
practical detectors for line codes are often not optimum in order to simplify circuitry. 
However, the performance of an optimum detector can always serve as a reference 
for comparison. Substitution codes and block line codes are more complicated codes 
with improved performance over basic line codes. They are discussed in Sections 
2.5 and 2.6. Section 2.7 summarizes this chapter. Intersymbol interference (ISI) 
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phenomena and equalization techniques, including duobinary signaling technique, 
are important topics in baseband signaling techniques, whether bandpass modulation 
is followed or not. An in-depth coverage of these topics requires a large number of 
pages and is therefore not included in this book which i s  intended for modulation 
schemes. For introductory knowledge of IS1 and equalization the reader can refer to 
any text book on digital communications. 

2.1 DIFFERENTIAL CODING 

Since some of the baseband binary waveforms use a technique called diffeerential 
encoding. we need become familiar with this simple yet important baseband tech- 
nique. This technique is not only used in baseband modulation but also in bandpass 
modulation where it is used to encode the baseband data before modulating it onto a 
carrier. The benefit of using differential coding will become clear when we discuss 
the schemes that use it. We now study this technique and it will be used throughout 
the rest of the book. 

Let {ak} be the original binary data sequence, then a differentially encoded bi- 
nary data sequence {dk} is produced according to the rule 

where t1> indicates modulo-2 addition. Modulo-2 addition is also called exclusive- 
OR (XOR). The modulo-2 addition rules are 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 
1 + 1 = 0. From (2.1) and the modulo-2 rules we can see that the current output 
bit of the encoder is determined by the current input bit and the previous output bit. 
If they are different the output bit is 1, otherwise the output bit is 0. This gives the 
name differential encoding. 

To perform differential encoding an initial bit is needed and it is called a refer- 
ence bit. For example, if { a k }  and I d k }  both start with k = 1, then we need a do as 
the reference bit. Since do could be chosen as 0 or 1, then {ak} can be encoded into 
two different data sequences. They are complementary to each other. 

The decoding rule is 

where the hat indicates the received data at the receiver. The received {&} could be 
the same as or different from {dk}. For example channel noise might have altered 
some of the bits in {dk} when it is received. Even if noise is light so that no bits 
have been altered by noise, the polarity reversals in various stages of the transmitter 
and receiver might have reversed the polarity of the entire sequence. One of the 
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Encoding 

Decoding 
h 

dk(correctpolarify) 0  I I 0  1 I I I 0 1 0  0 0  
A 

f i  h 

a.k = dk (L) dk-l 1 0 1 1 0 0 0 1 1 1 0 0  

Decoding 
h 

dk(reversedpolarity) I 0 0  1 0  0  0  0 1 0  1 1 1 
h 

A h 

a,k = d k  (5 dk-l 1 0 1 1 0 0 0 1 1 1 0 0  

Table 2.1 Examples of differential coding. 

important uses of differential coding is to eliminate the effect of polarity reversal. 
This is clear from (2.2) since the decoder output depends on the difference of the 
two consecutive received bits, not their polarities. When the polarity of the entire 
sequence is altered, the difference between two consecutive bits remains the same. 
Table 2.1 is an example which illustrates the encoding and decoding processes with 
or without polarity reversal. The results are the same. Note that no errors caused by 
noise are assumed in the example. The first bit of {dk} is the reference bit which is 
0 in the example. 

Figure 2.1 shows the block diagrams of the differential encoder and decoder 
defined by (2.1) and (2.2). 

The probability distribution of the differentially encoded sequence is of interest. 
It is usehl when the autocorrelation function of the coded sequence is calculated later 
in the chapter. Assume the data sequence {ak} is stationary, its bits are independent 
and with a distribution of (po ,  p l ) ,  where po = Pr(0) and pl = Pr(l), po + pl = 1. 

(k) (k) Assume the distribution of the kth bit of the coded sequence Idk} is (q, . q, ). 
where gik) = Pr(0) and qik) = Pr(l),  g r )  + q!k)  = 1. According to (2.1) we have 

Since an initial bit is specified when encoding, q?) and g\o) are known. They are 
either 0 or 1, depending on what is chosen. For instance, if the reference is 0, then 

= 1, q!') = 0. It is easy to verify that if po = pl = 112, then q r )  = q\k) = 
112, for all k. That is, differential encoding does not change data distribution for 
equally likely data. However, when the distribution of the original data is not equal, 
differential encoding does change the data distribution. Further we can show that 
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Figure 2.1 Differential encoder (a), and decoder (b). 

qc) = qik) = 112 asymptotically regardless of values of po and pl. 
We start with any one of the above two equations, say (2.3), from which we have 

Taking a r-transform of both sides of the above equation, we obtain 

(k) where Qo(z )  is the t-transform of sequence {qo }. Rearranging terms we have 

Using the final-value theorem we obtain the limit of qr) as 

lirn q r )  = lirn [ ( l - z - ' ) ~ ~ ( t ) ]  
k-+ a3 2-1 

= lim 1 - P o  - 
1 - - 

2-1 1 - 2  - 1 -  2 

Thus we can conclude that regardless of the distribution ofthe original data, the 
distribution ofthe dffeerentially encoded data is always asymptotically equal. 

To see how fast qik) converges to 1/2, we define two ratios as 
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and substituting (2.3) and (2.4) into the r k  expression we have 

Next we define the ratio difference as 

If Ark + 0, then rk + r k - 1  solving (2.5) will give rk = 1 (i.e., q i k )  = qAk) for 
k + m). 

Calculations show that for po = 0.3 and 0.1, qik) virtually equals q r )  ( a r k  < 
0.001) at k = 10 and 38, respectively. For a very skewed distribution ( e g ,  po = 
0.01), to reach Ark < 0.001,411 iterations are needed. Ail these k values are small 
when compared with numbers of data in practical systems. Thus we can see that the 
distribution of the differentially encoded data becomes virtually equal very quickly, 
regardless of the distribution of the original data, 

Differential encoding can also be done by taking the binary complement of the 
modulo-2 adder as the output, that is 

where ir denotes a binary complement of x. Again this second rule can generate two 
complementary sequences with the two different choices of the reference bit. The 
corresponding decoding rule is 

which is also capable of correcting polarity reversals. The block diagrams of the 
encoder and the decoder defined by this set of rules are similar to that in Figure 2.1 
except that an inverter is needed at the output of both encoder and decoder. 

The above argument about distribution also applies to data encoded this way 
since this coded sequence is just a complement of the previous one. 

Another type of differential encoding is 

which produces a three-level sequence (- 1,0! + 1). An arbitrary initial reference bit 
a, must be specified. It is obvious that the distribution of dk is 

1, ql = plpo,  for ak-1 = 1 and ak = 0 
d k =  { -1, 9-1 = popl,  for ak-1 = 0 and ak  = 1 

0, qo=pg+p:, f o r a k _ l = a k = ~ o r l  
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Decoding can be done as follows. First {& } is converted to unipolar {Gk} by 
full-wave rectification, then {Ck} is recovered from {Ck} by XOR operation: 

where the initial Eo = a, is known. This coding scheme is also immune fiom polarity 
inversion-ambiguity problem since after full-wave rectification, the waveform would 
be the same. 

2.2 DESCRIPTION OF LINE CODES 

Many binary line codes have been proposed in the literature and some of them have 
been used in practical systems 11-1 11. Basic codes can be classified into four classes: 
nonmturn-to-zero (NRZ), return-to-zero (RZ), pseudoternary (P T), and biphase. N RZ 
and RZ classes can be further divided into unipolar and polar subclasses. Advanced 
codes include substitution codes and block codes. There are some other codes which 
do not belong to any of the classes. Some codes may belong to more than one class. 
Figure 2.2 is a quite complete collection of waveforms of various basic line codes. 
Each of them will be studied in detail shortly. Figure 2.2 does not include substitu- 
tion codes and block codes. They will be studied separately in the latter part of this 
chapter. 

The reason for the large selection of line codes is because of their differences 
in performance which will lead to different applications. The features to look for in 
choosing a line code are as follows. For a particular application, some of the features 
may be important while others may be not. 

(1) Adequate timing information. Bit or symbol timing are usually recovered 
fiom the received data sequence. This requires that the line code format 
provides adequate transition density in the coded sequence. Formats with 
higher transition density are preferable since the timing recovery will have 
fewer problems with these kinds of signals. A long string of binary 1 s and 
0s in the data should not cause a problem in timing recovery. 

( 2 )  A spectrum that is suitable for the channel. For example, line codes with 
no dc component and small near-dc components in their power spectral 
density (PSD) are desirable for magnetic recording systems, ac coupled 
channels, or systems using transformer coupling which have very poor low 
fiequency responses. In addition the PSD of the line code should have 
sufficiently small bandwidth compared with the channel bandwidth so IS1 
will not be a problem. 

( 3 )  Narrow bandwidrh. The bandwidth of the line code should be as narrow 
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Figure 2.2 Line codes. After [ 1  21. 
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as possible. The transmission bandwidth may be reduced by filtering and 
multilevel transmission schemes. The penalty is an increase in Pb due to 
an increase in IS1 and a decrease in signal-to-noise ratio. Some line codes 
may suffer less degradation than others. 
Low errorprobability. The line code can be recovered with low bit error 
probability (Pb)  from noise andlor IS1 corrupted received signal. The ones 
with lower Pb for the same average bit energy are usually preferable, but 
consideration should be given to other characteristics, such as bandwidth 
and self-timing capability. 
Error defection capabiliv Some schemes have the capability of detecting 
errors in the received sequence without introducing extra bits like in 
channel coding schemes. This error detection capability can be used as 
a means of performance monitoring. However error correction is not 
possible, which can only be achieved through channel coding techniques 
or automatic retransmission schemes. 
Bit sequence independence (transparency). The line code must be able to 
encode any data sequence from any source and the decoder must be able to 
decode it back to original data. In other words, attributes of the code are 
independent of the source statistics. 
Dflerential coding. This feature is useful since differentially coded 
sequences are immune from polarity inversion as we studied in the previous 
section. However, if differential coding is not inherent in the line code 
itself, a separate differential coding scheme can be incorporated in the 
system. 

In the following we describe the various line codes basically in groups. But 
some of the line codes are singled out due to their importance or unique features. 
When we study these codes the above criteria should be kept in mind, and we will 
refer to them from time to time. 

We put emphases on coding rules and characteristics. W generally omit coder 
and decoder implementations. Simple codes can be implemented by simple combi- 
national and sequential digital circuits, while complex codes can be implemented by 
digital signal processing techniques. A comprehensive coverage on coder and de- 
coder implementation is not necessary and also is beyond the page limit of this book. 
Interested readers may refer to listed references for circuits. However many reported 
circuits are obsolete already, new circuits should be designed based on new products 
of IC chips. 
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2.2.1 Non retu rn-to-Zero Codes 

The nonretum-to-zero group includes the first three codes in Figure 2.2. Two levels 
(f A)  of the pulse amplitude are used to distinguish binary I and 0 in the N U - L  for- 
mat. This waveform has no dc component for an equiprobable binary data sequence. 
In the NRZ-M format a level change (A to -A or -A to A) is used for a mark (1) in 
the binary sequence and no change for a space (0). The NRZ-S waveform is similar 
except that the level change is used to indicate a space (0). Both NRZ-M and NRZ-S 
are differentially encoded waveforms. They can be produced by modulating the dif- 
ferentially encoded binary sequence using NRZ-L format. The NRZ-M waveform 
is generated with the encoding rule of (2.1) and the NRZ-S waveform with the en- 
coding rule of (2.6). The reference bit is 0. The corresponding coded sequence for 
NRZ-M is already given in Table 2.1. 

Recovery of NRZ-L' from NRZ-M or NRZ-S is accomplished by differential 
decoding. 

The main advantage of NRZ-M and NRZ-S over NRZ-L is its immunity to po- 
larity reversals owing to the differential coding. 

All the above three formats can be made unipolar by changing the lower level 
-A to level 0. For a binary sequence with equally likely 1 s and Os, which is the usual 
assumption, the unipolar waveforms have a dc component at a level of A/2, whereas 
the polar ones do not. 

Since a string of 1s in NRZ-S, a string of 0s in NRZ-M, and a string of is or 0s 
in NRZ-L does not contain any transitions, this class of waveforms may not provide 
adequate timing information for data with long strings of 1s and 0s. Solutions to this 
shortcoming include precoding the data sequence to eliminate long strings of I s and 
0s or transmission of a separate synchronizing sequence. 

NRZ-L is used extensively in digital logic as we all know. NRZ-M is used pri- 
marily in magnetic tape recording. In telecommunication, NRZ format applications 
are limited to short-haul links due to its timing characteristic. 

2.2.2 Return-to-Zero Codes 

The lack of timing information of the NRZ formats can be overcome by introducing 
more transitions into the waveform. This leads to the RZ formats shown in Figure 
2.2. However, the bandwidth of an RZ format is wider than that of an NRZ format, 
as we will see shortly. 

In the unipolar RZ format, a binary 1 is represented by a positive pulse for a half- 
bit period then returning to zero level for the next half period, resulting in a transition 

Since N U - L  waveform is the most common waveform in the digital circuit. it  is chosen as the 
ultimate decoding result of line codes in our discussion. 
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in the middle of the bit. A binary 0 is represented by the zero level for the entire bit 
period. Since there are no transitions in a string of Os, precoding or scrambling are 
needed to eliminate long strings of 0s. This format also has a dc component since it 
is unipolar. 

In the polar RZ format, 1 and 0 are represented by positive and negative half- 
period pulses, respectively. This waveform ensures two transitions per bit. It has no 
dc component. 

2.2.3 Pseudoternary Codes (including AMI) 

This group of line codes use three levels &A and 0. AM1 (altemative mark inversion) 
codes are in this group. They are often called bipolar codes in the telecommunica- 
tion industry. In AMI-RZ (return-to-zero AMI) format, a I is represented by an RZ 
pulse with altemative polarities if 1s are consecutive. A 0 is represented by the zero 
level. In AMI-NRZ (nonreturn-to-zero AMI), the coding rule is the same as AMI- 
RZ except that the symbol pulse has a ful l  length of T. They have no dc component 
but like unipolar RZ their lack of transitions in a string of 0s may cause a synchro- 
nization problem. Therefore AM1 codes with zero extraction (substitution codes) are 
proposed as will be discussed later in this chapter. 

Recovery of NRZ-L from the AMI-NRZ code is accomplished by simple full- 
wave rectification [ I J .  Similarly AMI-RZ code can be full-wave rectified to form 
RZ-L waveform which can be easily converted to NRZ-L waveform. 

These formats are used in baseband data transmission and magnetic recording. 
The AMI-RZ format is most often used in telemetry systems. It is used by AT&T for 
T1 carrier systems. 

Other members of this group include the dicode NRZ and dicode RZ. Dicode 
formats are also called twinned binary in the literature 11.21. In dicode NRZ the 1 
to 0 or 0 to 1 transition changes the pulse polarity, a zero level represents no data 
transition. In dicode RZ, the same coding rule is used except that the pulse is only 
half-bit wide (i.e., it returns to zero for the second half bit). 

Dicodes and AMI codes are related by differential coding [2]. If data sequence 
{ o h }  is the sequence used directly to construct a dicode, then sequence { d k  1. where 
dk  = ( l k - l  - n k ,  can be used to construct an AM1 code which is a dicode to the 
original sequence { a k } .  This can be seen from the example in Figure 2.2. Assum- 
ing a0 = 0. we convert { a k }  = ( I . O . ~ , l . O , O . O , 1 , I . l . O , O )  to {dk} = (-I,I.-- 
1,0,1.0,0.-1,0,0,1,0). Using {dk} and AM1 rules we can construct exactly the di- 
codes in the figure (with replacements A and -A for 1 and -1, respectively). 

Dicodes can be decoded as follows. First (& } is converted to unipolar {Gk } by 
ful I-wave rectification, then { i ik  } is recovered from { G k  } by modulo-2 summation: 
b A 

n k  = Q- 1 - i  iik (iiO = no) .  Readers can easily verify this using the above example. 
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2.2.4 Biphase Codes (including Manchester) 

This group of line codes uses half-period pulses with different phases according to 
certain encoding rules in the waveform. Four waveforms of this group are shown in 
Figure 2.2. 

The B i - C L  (biphase-level) format is better known as Manchester, and is also 
called diphase, or split-phase. In this format, a 1 is represented as a pulse with first 
half bit at a higher level and the second half bit at a lower level. A 0 is represented as a 
pulse with the opposite phase (i.e., a lower level for the first half bit and a higher level 
for the second half bit). Of course, the pulse shapes for 1 and 0 can be exchanged. 

The Bi-@-M (biphase-mark) format requires that a transition is always present 
at the beginning of each bit. A 1 is coded as a second transition in the middle of the 
bit and a 0 is coded as no second transition in the bit. This results in representing a 
1 by one of the two phases of the pulse. In the Bi-a-S (biphase-space) format the 
opposite coding rules are applied to I and 0. The above three biphase formats ensure 
that there is at least one transition in a bit duration, thus providing adequate timing 
information to the demodulator. 

The fourth format in this group is the condi~ioned Bi-a-L . In fact it is a differ- 
entially encoded Bi-@-L (i.e., the data sequence used for modulation is generated 
from the original binary sequence with differentially encoding). Like NRZ-M and 
NRZ-S, this format is immune from polarity inversions in the circuit. 

Biphase formats are used in magnetic recording, optical communications, and 
in some satellite telemetry links. Manchester code has been specified for the lEEE 
802.3 standard for baseband coaxial cable using carrier sense multiple access and 
collision detection (CSMAKD) (i.e., Ethernet [13.14]). It has also been used in MIL- 
STD- 1553B, which is a shielded twisted-pair bus system designed for high-noise en- 
vironments (141. Differential Manchester has been specified for the IEEE 802.5 stan- 
dard for token ring, using either baseband coaxial cable or twisted-pair. Because it 
uses differential coding, differential Manchester is preferred for a twisted-pair chan- 
nel. 

2.2.5 Delay Modulation (Miller Code) 

Delay modulalion (DM) [3] or Miller code also can be classified into the biphase 
group since there are two phases in the waveform. However, it has some unique fea- 
tures. A 1 is represented by a transition in the midpoint of the bit. A 0 is represented 
by no transition unless it is followed by another 0. Then a transition is placed at the 
end of the first 0 bit. This format has a very small bandwidth, and most importantly, 
very small dc component as we will see shortly. This makes it suitable for magnetic 
recording since magnetic recorders have no dc response 131. 
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2.3 POWER SPECTRAL DENSITY OF LINE CODES 

In this section we first present a general formula for power spectral density (PSD) 
calculation for digitally modulated baseband waveforms. It can be used for most 
of the binary line codes. Therefore for most of the time we will simply apply this 
formula to various codes in the rest of this section. However, this formula is not 
applicable to some codes so other methods to calculate the PSD will be discussed. 

We know that most signals like voice signal and image signal are essentially 
random. Therefore digital signals derived from these signals are also random. Data 
signals are also essentially random. 

Assume the digital signal can be represented by 

where ak are discrete random data bits, g ( t )  is a signal of duration T (i.e., nonzero 
only in [O, TI). Let us name g ( t )  as symboljunction. It could be any signal with a 
Fourier transform. For example it could be a baseband symbol shaping pulse or a 
burst of modulated carrier at passband. The random sequence {ak} could be binary 
or nonbinary. 

In Appendix A (A. 16) we show that the power spectral density of s ( t )  is 

where = 27r f .  G( f )  is the Fourier transform ofg(t) and R(n) is the autocorrelation 
function of random sequence {ak): defined as R(n) = E{aknk+ , } ,  where E { x )  
is the probabilistic average of x. Equation (2.12) shows that the PSD of a digitally 
modulated signal is not only determined by its symbol function but also is affected 
by the autocorrelation function of the data sequence. 

In the following we always assume that the original binary data sequence has I s 
and 0s equally likely. That is, po = Pr(0)  = pl = Pr(1) = 112. However, in order 
to write the modulated waveform in the form of (2.1 l) ,  sequence {ak} of (2.11) is 
usually not the original sequence, rather it is derived from the original. Therefore its 
probability distribution needs to be calculated. 

For uncorrelated sequence {ak }, 
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where 02 is the variance and ma is the mean of the sequence {ak). Using the Poisson 
sum formula, the PSD expression can be written as (see Appendix A, (A. 17)) 

where Rb = 1/T is the data bit rate. 
For line codes with R(n) = 0 for n # 0, (2.12) is more convenient. For line 

codes with R(n) # 0 for n # 0, (2.14) is more convenient. 
Among baseband modulated signals, NRZ-L, NRZ-M, NRZ-S, RZ (polar or 

unipolar), AMI-RZ, AMI-NU,  Bi-@-L, and dicode (RZ or NRZ) can be written in 
the form of (2.11). Therefore their PSD can be found quite easily using the above 
series of equations. However, there are some digital signals which can not simply 
be represented by (2.1 1). Among the line codes, Bi-a-M, Bi-CS, DM, and the sub- 
stitution codes and block codes (which will be described later) belong to this group. 
If the signal is wide sense stationary (WSS), to find their PSD, the approach is to 
find their autocorrelation R ( r )  first, then take the Fourier transform to find the PSD 
(Wiener-Khintchine theorem). If the signal is cyclostationary, then R(T)  is the time 
average of the time-dependant R(t, T )  in a period. The Wiener-Khintchine theorem 
is still applicable when time average of R(t, r )  is used for a nonstationary (including 
cyclostationary) process. 

Some coded sequence, like Bi-a-M and delay modulation, can be described as 
a first order Markov random process. Their R(T)  can be found by using the method 
provided in p]. We will use this method when we encounter the calculation of PSDs 
of Bi-@-M and delay modulation. 

For more complex coded sequences one can use the general formula given by 
[15,16]: 

where Gi ( f )  is the Fourier transform of the state i pulse waveform2, T is the pulse 
width, and bij is the Kronecker delta function. pi is the state i steady-state occurrence 
probability, and Uji( f) is the transform probability of state j occurring after state i. 
Probability pi is found by taking residues of Uji ( f )  at its poles when f = 0. The 
Uji ( f )  is calculated by a signal flow graph and Mason's formula [ I  71. We do not 
attempt to use this method in this chapter in order not to make our discussion too 

A state of a coded sequence is determined by the symbols representing an information bit. For 
example, Manchester code has two states: 10 or 01, corresponding to the two half-positive and 
half-negative pulses. 
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necessary. Or we may use the computer Monte-Carlo simulation to find the 
and PSD. 

Now we are ready to discuss the PSDs of the binary line codes described 
previous section. 

mathematical? Instead, results obtained using this method may be quoted when 
R ( d  

in the 

2.3.1 PSD of Nonreturn-to-Zero Codes 

Recall that NRZ-M and NRZ-S are generated by NRZ-L modulation with differen- 
tially encoded data sequences. Assume that original binary data are equally likely. 
Then according to Section 2.1, the differentially encoded sequences with (2.1) or 
(2.6) are also equally likely. In other words, the statistic properties of the sequences 
used directly for modulation are the same for NRZ-L, NRZ-M, and NRZ-S. And 
their symbol functions are also the same. As a result their PSDs are the same. 

NRZ formats' symbol hnction is a square pulse with amplitude A in the interval 
[O. TI, which can be expressed as 

A, O l t S T  
0, elsewhere 

Its Fourier transform can be easily found as 

where s i n c ( t )  = s i n ( x ) / x  is the sincfunction. Next we need to find the autocorre- 
lation function R(n)  of the binary data sequence {ak}. For this waveform 

1. for binary 1 ,  pl = 112 { -1, forbinaryO, pa = 1/2 

Thus 

We also do not expect the reader to be able to use this method by just reading this formula. This i s  to 
provide a reference in case the reader is interested in finding out the PSD of a complex coded sequence. 
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Substitute expressions of G( f) and R(n) into (2.12) we have, 

Figure 2.3(a) shows the plot of rk, ( f j  and the plot of the fractional out-of-band 
power, Pob ( B ) :  defined asJ 

In the figure Pob(B) is in dB, the horizontal axis is normalized frequency f T = 
f /Rb.  In the figure we set A = 1 and T = 1 for unity symbol pulse energy. This 
PSD is a squared sinc function with its first null at f T = 1. The signal energy 
concentrates near 0 frequency and the null bandwidth is BnUcl = 1 .ORb, 90% energy 
bandwidth is = 0.85Rb and the 99% bandwidth is Bg9% = 10Rb. 

We mentioned that all three NRZ waveforms can be made unipolar. Assume the 
pulse amplitude is A, then there is a dc component of A/2 in the signals and it appears 
as an impulse function with strength of A2/4 at 0 frequency in the power spectral 
density as we will show next. In this case the pulse function is still the one in (2.1 6), 
and the data is 

1, for binary 1, pl = 112 
0, for binary 0, po = 112 

(2.22) 

From this we have 

and 

Substitute expressions of G( f ), ma, and o2 into (2.14) we have, 

A2 
(unipolar NRZ) 

For unity average symbol energy we must set A = 4. This PSD has the same shape 
of that of the polar NRZs. The only difference is the impulse at the 0 frequency. The 

@, ( f )  may be singular. For instance. \Ir, ( f )  may contain E (  f ). In these cases we must integrate 
the singular pan separately [-% @, (f )df will equal unity when @, ( f )  is normalized. In this book 
Poh(B) is evaluated by numerical integration. 
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ff (a) Polar NRZ BT 

ff 
(b) Unipolar N U  BT 

0 I 

- loL I 

0 I - 3 

(d) Unipolar RZ BT 

Figure 2.3 PSD o f  line codes (Poh(B)  is in dB). 
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ff (a) AM-RZ and dicode-r(;! BT 

fT (b) AMI-NRZ and dicode-NRZ BT 

1 1 

- 

0 I 2 0 1 2 

fT (c) Biphase and DM1 BT 

ff (d) DM (Miller code) BT 

Figure 2.4 PSD of line codes (POb(B) is in dB) (continued). 
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PSD and the out-of-band power are shown in Figure 2.3(b). The bandwidths are 
B,,,tr = l.ORb, BgoX = 0.54Rb, and Bg9% z 5&. 

2.3.2 PSD of Return-to-Zero Codes 

For RZ formats, the pulse function is a square pulse with half-bit duration 

A, O I t 1 $  
"(") = { 0, elsewhere 

The corresponding Fourier transform is 

For polar RZ waveform 

1: forbinary 1 ,  pl = 112 
"'= { -1, forbinary0, p~ = 112 

which is the same as polar NRZ. Thus 

Substituting (2.27) and (2.29) into (2.12), the result is 

For unity average symbol energy we must set A = a. The PSD and the out- 
of-band power are shown in Figure 2.3(c). Compared with the PSD of NRZ format, 
this PSD is a stretched version with frequency axis scaled up twice. Therefore all its 
bandwidths are double that of NRZ. The bandwidths are BnUrl = 2.0Rb, BgO% 5. 
1.7Rb. and Bsgx = 22&. 

For ztnipoiar RZ format the symbol pulse is the same as in (2.26). The data 
sequence, its mean and variance are the same as those of unipolar NRZ as given in 
(2.22). (2.23) and (2.24). Substituting G( f ) in (2.27). ma and 02 into (2.14) we have 

A2T sill K f TI 00 

cdf)  = ( r f T / 2  [l 4- Rb 6 ( f  - nRa) , (unipolar u) 
k=-mJ I 
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For unity average symbol energy we must set A = 2. The PSD and the out- 
of-band power are shown in Figure 2.3(d). From the figure we can see that besides 
the continuous spectrum resembling the PSD of polar RZ, there are spikes at all odd 
integer frequencies. Their strengths are determined by the second term of (2.3 1) and 
are given by 

For A = 2, the strengths of the components form f = 0. Rb. 3Rb. 5Rb. 7Rb.  and 
9Rb are: 0.25, 0.101, 0.01 1, 0.004, 0.002, and 0.001 in the two-side spectrum. All 
discrete harmonics add up to 0.5 and the rest of energy (0.5) is in the continuous part 
of the spectrum. 

The bandwidths are BnUl1 = 2.0& BgOg, x 1.6Rb, and = 22Rb. which 
are almost the same as those of the polar RZ format. 

2.3.3 PSD of Pseudoternary Codes 

For AM1 codes the data sequence { a k }  takes on three values: 

1, forbinary 1, pl = 114 
- 1 ,  for binary 1, p - ,  = 114 

0 ,  for binary 0, po = 112 

We can find R(0) as follows 

Adjacent bits in { a k }  are correlated due to the alternate mark inversion. The adjacent 
bit pattern in the original binary sequence must be one of these: (1,1), (1,0), (0, I), and 
(0,O). The possible aka.+, products are - 1 ,  0, 0, 0. Each of them has a probability 
of 1/4. Thus 

For n > 1, a k  and a k + ,  

0,0,O. Each case occurs 
are not correlated. The possible nkak+ , ,  products are f 1 ,  
with a probability of 114. Thus 
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Summarizing above results we have 

Substitute this R(n)  and the symbol pulse spectrum of (2.27) into (2.12), we have 
the PSD of A MI-RZ code: 

2 

sin2 7r f T, (AMI-RZ) (2.33) 
4 

The PSD is shown in Figure 2.4(a) where we set A = 2 to normalize the PSD. The 
bandwidths are BnUI1 = l.ORb, Bgo% = 1.71 Rb, and Elggr. = 20Rb, which are 
narrower than those of other RZ formats, especially the null bandwidth is only half 
of the others. 

The PSD ofAMI-NRZ can be obtained by replacingTl2 with T in G( f )  of AMI- 
RZ (2.27) since both of them have the same coding rules and the only difference is 
the pulse width. Thus the PSD of AMI-NRZ is given as 

sin7r fT 2 
sin2 a f T ,  (AMI-NRZ) (2.34) 

The PSD is shown in Figure 2.4(b) where we set A = to normalize the PSD. 
The bandwidths are BnUll = l.ORb, Bgo% = 1.53Rbl and B99% - 15Rb which are 
narrower than those of AMI-RZ. 

The PSDs of other members of this group (i.e., dieode NRZ and dicode RZ (or 
twinned binary codes)) are derived in the following. As we described before that 
the dicodes can be constructed using AM1 rules and a differentially coded sequence, 
that is. the dicodes can be written in the form of (2.11) as 

where. 
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Sequence {dk} is a pseudoternary sequence derived from the original binary data 
sequence {ak}. Its probability distribution is exactly the same as that of AM1 (2.32). 
Therefore the PSDs of dicodes are the same as those of AM1 codes and bandwidths 
are also the same as those of corresponding AM1 codes. 

2.3.4 PSD of Biphase Codes 

For Bi-@L (Manchester), the symbol fbnction is half-positive and half-negative 
pulse defined by 

The 

The 

( 0, elsewhere 

Fourier transform of g ( t )  is 

sin T f T/2 
G( f) = AT ( T,S ) (sin r f ~ / 2 )  je-'"Ti2 

data probability distribution is 

1, for binary 1, pl = 1 /2 
-1, forbinaryO,p,=1/2 

which is the same as that of NRZ. We have shown that R(n) = 1 for n = 0 and 
R(n) = 0 for n # 0 (2.19). Using (2.12) we obtain 

This PSD is shown in Figure 2.4(c) where we set A = 1 for unity symbol energy. 
The PSD of the conditioned Bi-a-L is the same as that of the Bi-a-L since it is 

merely a differentially encoded Bi-@-L, and differential encoding does not change 
the probability distribution of the equally likely data. 

It is obvious that B i 4 - M  and Bi-a-S have the same PSD since the marks and 
spaces are equally likely in an equiprobable data sequence. We also observe that their 
waveforms are very similar to that of Bi-iP-L in terms of pulse shapes and number 
of transitions. We therefore may intuitively guess that their PSD is the same as that 
of Bi-a-L. In fact this guess is right. We will prove it in the following. 

We will use the method used in deriving the PSD of the delay modulation or 
Miller code whose PSD will be discussed in the next subsection 131. We will base our 
derivation on Bi4-M and the result is applicable to Bi-@-S as we mentioned already. 
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The coding rule of B i4 -M can be described as a first-order Markov random 
process. Each bit interval can be divided into two half-bit intervals, then each bit 
interval can be described by the levels occurring in the two half-bit intervals. Tern- 
porarily assume the amplitude A to be 1, then the two levels are +1 and - 1. There 
are four types of bit intervals or states that can occur in a bit interval: ( -1 .  +I), 
( 1  -1). ( -  1 -1) and ( 1  1 )  They are equally likely (i.e., pi = 114. i = 
1.2 .3 .4) .  A state of a bit interval depends only on the state of the previous bit inter- 
val. This is a first-order Markov process. The process is then completely described 
by P = [pil l ,  the probability-of-transition matrix, in which an element Pil = p ( j / i )  
equals the conditional probability of the state j occurring after a given state i has oc- 
curred in the previous bit interval. For Bi-iP-M, from the coding rules we can find 
the transition matrix as 

which is defined in Figure 2.5(a). 
The autocorrelation function R(r)  at T = nT (n = 0 ,1 ,2 .  ..) is [3jS 

where 
g, ( t )  = waveform of state i. 
p ( j / i .  n )  = probability of occurrence of state j at t = nT, given state i at t = 0. 

which is equal to i jth element of the matrix Pn . 
\Ir = a matrix with elements wi3 = J,T g i ( t ) g j  ( t ) d t / T .  WFT is the transpose of 

\I: 
T (n+ l ) T  

The integral u~,, = J, gi(t)gJ ( t ) d t / T  = JnT gi ( t ) g j  ( t ) d t / T  accounts for 
"time averaging" the time-varying R(nT, t) over a bit interval in order to obtain 
R(rrT). Based on the waveforms of the states, we can find I€* as 

 he transpose of It.' i s  missing in the reference [31 
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which is defined in Figure 2.5(b), where shaded areas are areas of integration. Sub- 
stituting P and W into (2.39), the result is 

Similarly we can find the autocorrelation for T = (n + 1/2)T as follows 

where 

and 

which are defined in Figure 2.5(c, d). The results for n 2 0 are 

Due to symmetry of the R(r) ,  it is clear that R(-T/2) = -0.5 and R(nT/2) = 0 
for all n < -1. The autocorrelation at intermediate values of r is obtained exactly 
by joining these points. R(r)  of Bi-a-M is shown in Figure 2.5(e). By taking the 
Fourier transform of R(r) ,  the PSD is easily found as 

sin 7i f T/2 
P, (f) = A ~ T  ( ) sin2 r fT /2 ,  (Bi-@-M and S) 

nf TI2 
(2.4 1 ) 

which is exactly the same as that of BCQ-L or Manchester. 
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The bandwidths of all biphase codes are Bnurl = 2.0Rb. BgOx = 3.05Rb. and 
Bg9% 2 29Rb. 

2.3.5 PSD of Delay Modulation 

The spectral analysis of delay modulation is also based on first-order Markov process 
(31. The autocorrelation R(nT)  and R((n  + 1/2)T) are also given by (2.39) and 
(2.40). 

The probability-of-transition matrix is 

which is defined in Figure 2.6(a). The W matrices are 

All of them are defined in Figure 2.6. 
By using these matrices we can determine R(T)  for T = nT and ( n  + 1/2)T. 

The intermediate R(T)  is obtained exactly by joining these points. In addition it 
can be easily verified that for DM, P" w = - llV 4 and P%', = - l I\, i = 1.2.  
Therefore 

Thus, the first eight values of R ( T )  from R(0) to R(3.57') given in Figure 2.6(e) 
completely specifies R ( T ) .  Taking the Fourier transform of R(r) ,  using (2.42), and 
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the relation that !P, ( - f) = Q: ( f ) ,  where * indicates conjugate, the PSD of DM is 

where Re indicates real part. The integral is easily, though tediously, evaluated 131: 

2A2 W f )  = (23 - 2 cos 6 - 22 cos 28 
(27r f ) 2  T(17 + 8 cos 8) 
- 1 2 ~ 0 ~ 3 8 + 5 ~ 0 ~ 4 0 +  1 2 ~ 0 ~ 5 8 + 2 ~ 0 ~ 6 8  

-8 cos 70 + 2 cos SO), (DM or Miller) (2.43) 

where 8 = 7r fT. The PSD is shown in Figure 2.4(d) where we set A = 1 for unity 
symbol energy. The PSD has a peak at f = 0.4Rb, and it has a very narrow main 
lobe bandwidth of about 0.5Rb. However, it converges to zero very slowly. As a 
result its energy within a bandwidth of 2Rb is only 76.4% and within 250Rb is only 
83.7%. 

2.4 BIT ERROR RATE OF LINE CODES 

In this section we discuss optimum detection of line codes transmitted through an 
AWGN channel and their error probabilities. We should keep in mind that the AWGN 
channel model implies that the channel frequency response is flat and has infinite 
bandwidth. The only distortion is introduced by the additive white Gaussian noise. 
This of course is not accurate for many practical channels. However, it is a reasonably 
accurate model as long as the signal bandwidth is much narrower than that of the 
channel. It is also important to note that the optimum receiver might not be the 
practical solution. Other nonoptimum receivers might be just as good as the optimum 
one in certain circumstances (e.g., high signal-to-noise ratio) and their structures are 
simpler. Nonetheless the error probability in the AWGN channel serves as a reference 
for performance comparison. 

We start with the binary codes and will progress to pseudotemary codes and 
other complex codes. The hndamental theory of detection and estimation of signals 
in noise is provided in Appendix B. Here we will first present the signal model and 
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use the corresponding results in Appendix B to obtain the error probabilities of the 
line codes. 

2.4.1 BER of Binary Codes 

A binary line code consists of two kinds of signals, or fiom the point of view of 
detection theory, we have two hypotheses: 

H I  : sl ( t ) .  0 < t 5 T , is sent with probability of pl 

HZ : s 2 ( t ) .  0 5 t 5 T , is sent with probability of p2 

where pl and pz are called a priori probabilip. The energy of the two signals are 

and 

In general these two signals may be correlated. We define 

as the correlation coeflcient of s ( t )  and s2 ( t ) .  lplZ I 5 1.  The received signal is 

where the noise n ( t )  is the AWGN with zero mean and a two-sided spectral density 
of *1',/2. 

The optimum receiver consists of a correlator or a matched filter matched to the 
difference signal (see Appendix B) 

These two forms of receiver are shown in Figure 2.7(a, b) and they are equivalent in 
terms of error probability. The decision regions of binary signal detection is shown 
in Figure 2.7(c) where pi = pi ( T ) ,  i = 1 ,2 .  

The threshold detector compares the integrator or sampler output r = r ( T )  to 
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z(T) = P (T) + n (T) 

(a) 

Sample at t = T 
r(t) = s (t) + n(t) 

h(T-t) z(T) < YO 

Figure 2.7 Optimum receiver for binary signals: (a) correlator. (b) matched filter. (c) decision regions. 
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threshold 7 ,  and decide which hypothesis is true. that is, the decision rule is 

For minimum errorprobubility criterion and pl = p2, the threshold is chosen as (see 
Appendix B, (8.22)) 

The bit error probability is given by 

where 

is the energy of the difference signal, and Q ( x )  is the Q-function, which we have 
defined in Chapter 1 already (see (1. l 1)). 

Expression (2.46) shows that the larger the distance ( E d )  between the two sig- 
nals sl ( t )  and s 2 ( t ) ,  the smaller the Pb. This is intuitively convincing since the larger 
the distance, the easier for the detector to distinguish them. In terms of each signal's 
energy, the above Pb expression becomes 

This expression indicates that Pb depends not only on the individual signal energies, 
but also on the correlation between them. It is interesting to discover that when 

- - 1, Pb is the minimum. Binary signals with p,, = - 1 are called antipodal. Pl2 - 
When p,,  = 0, the signals are orthogonal. 

2 . 4  1 1 BER of Nonreturn-to-Zero Codes 

NRZ-L. The NRZ-L is antipodal with 
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and 

Then p,, = -1, El = Ez = A2T1 and Eb = ( E l  + E 2 ) / 2  = A*T. From (2.47) 
its f i  is 

which is plotted in Figure 2.8. The optimum threshold is 

U~ipolar NRZ. For unipolar NRZ, 

and 

s d ( t ) = A ,  O s t S T  

Thus El = A2T, Ez = 0, Eb = A2T/2,  and p, ,  = 0. Its error probability is 

which is plotted in Figure 2.8. The optimum threshold is 

A2T 
Yo = - 2 '  

(un ipolar-N RZ) 

NRZ-M or S. They are modulated by differentially coded data sequence. To the 
coded sequence the optimum receiver produces an error probability of (2.48) with 

- 0. After detection the coded sequence is differentially decoded back to the 7'0 - 
original data sequence. The present bit and the previous bit of the coded sequence 
are used to produce the present bit of the original sequence (see (2.2)). Therefore 
error probability is 

PL = Pr (present bit comect and previous bit incorrect) 

+ Pr (present bit incorrect and previous bit correct) 
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= ( l - P b ) P b + P b ( l - P b )  
= 2(1 - pb)Pb - 2Pb, for small Pb 

That is 

which is plotted in Figure 2.8. 

2.4.1.2 BER of Return-to-Zero Codes 

Polar RZ. The signals are antipodal with 

A, O S t 1 5  
" ' @ )  = ( 0 ,  elsewhere 

and 

s d ( t )  = 
2A. O < t < $  
0, elsewhere 

Then p,, = - 1 ,  El = Ez = A2T/2,  and Eb = ( E l  + E 2 ) / 2  = A 2 ~ / 2 .  From 
(2.47) its Pb is 

which is the same as that of NRZ-L in terms of Eb/.hr0 and the optimum threshold 
3, is also 0. Pb is plotted in Figure 2.8. 

Unipolar RZ. The signals are 

A, O l t l S  
s l ( t )  = { 0. elsewhere 
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and 

A, O I t < $  
~ d ( t )  = 0: elsewhere 

Then p,, = 0, El = A ~ T / ~ ,  Ez = 0, and Eb = (E l  + E 2 ) / 2  = A2T/4. From 
(2.47) its Pb is 

which is plotted in Figure 2.8. This is the same as that of unipolar NRZ in terms 
of Eb/No and optimum threshold 7 ,  is A2T'/4. Note that for the Eb of unipolar- 
RZ to be the same as that of unipolar-NRZ, its amplitude must be & times that of 
unipolar-NRZ. This will make their thresholds the same when their Ebs are the same. 
However, if the amplitude is fixed, the unipolar-NRZ pulse will have twice the energy 
of the unipolar-RZ pulse, thus the error probability is lower. From this discussion we 
can see that different conclusions will be drawn for different comparison basis. In 
the following, our comparison is always based on the same Eb/lVo. However, the 
reader should be aware of different conclusions if comparison is based on the same 
amplitude. 

2.4.2 BER of  Pseudoternary Codes 

According to the results of the detection theory in Appendix B ((B.37), see also [ 18. 
Chapter 4]), for M-ary signals, the rn inimum error probability receiver computes 

and chooses the largest, where 

ri are statistically independent Gaussian random variables 
Their mean values depend on hypotheses, that is, 

AT 

with variance of NJ2.  
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--I-. AMI-NRZ or RZ, 
CMI 

Uni Bip g ase-M olar NRZ or S, or =A, 
Mlller, DM1 

NRZ-L, 
Polar RZ, 
Manchester 

Figure 2.8 Bit error probabilities of some line codes. 
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@i(t) are the orthonormal coordinates for projecting r ( t )  onto them. N is the dimen- 
sion of the vector space spanned by 4i ( t ) .  

AMI-NRZ codes consist of three types of signals, or we have three hypotheses: 

We choose @, ( t )  = sl ( t ) / &  = s l ( t ) / ~ f l ,  and the rest of signals are linearly 
related to it. Therefore N = 1 in this case and the optimum receiver consists of one 
correlator and a threshold detector. The detection rule (2.53) reduces to 

The decision rule is to choose the largest. For ll to be the largest we must have 
ZI > Z2 and ZI > Z3, from these relations we can deduce that 

N o l n 2 + E l  A 
H1 is true if r > 

2 f i  
= 713 

Similarly we can deduce that 

and 

H3 is true if?,, > r > yz3 

Therefore there are two thresholds and three decision regions as shown in Figure 2.9. 
The optimum receiver consists of just one correlator and a threshold detector with 
two thresholds as shown in Figure 2.9. 

Using Pr(e/si) to denote the probability of error when signal pi ( t )  is transmit- 
ted, the average bit error probability can be calculated as follows: 
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Figure 2.9 Optimum receiver (a), and decision regions (b), of AM1 signals. 

r 

Given El = A2T and Eb = 0.5E1 we have 

2Eb/Aro - ln 2 2Eb/;% + In 2 
= 9 ( 2Jm ) + Q (  2 ) , (AMI-NRZ) (2 .55 )  

Two-threshold 
detector 

A 
s i (t) 

, 
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This is the bit error probability of the optimum reception. 
However, when signal-to-noise ratio is high, then No ln 2 << E l ,  the thresholds 

can be set in the midway between signals with very little loss of error performance. 
That is, ,, - a / 2  and - - a / 2 .  Thus the BER expression (2.55) reduces 
to 

P b = q ~ ( / z ) ,  (AMI-NRZ) 

which is 3/2 times that of unipolar NRZ. Both accurate and approximate values of Pb 
for AMI-NRZ are plotted in Figure 2.8, where the upper curve is the approximation. 
It can be seen that they are very close, even at low signal-to-noise ratios. 

For AMI-RZ whose El = A2T/2 and average Eb = A2T/4, the BER can be 
found from (2.54) 

2Eb/N,  - In 2 
(AMI-RZ) (2.57) 

and 

which is the same as that of AMI-NRZ in terms of &/No.  
Since recovery of NRZ-L from AM1 codes is accomplished by simple full-wave 

rectification, the bit error probability of the final recovered data sequence remains 
the same. 

Dicodes and AM1 codes are related by differential coding. As described in Sec- 
tion 2.2.3, data sequence {&} is recovered from {Ck} using modulo-2 addition: 
Z k  = iik- it) Ck, where { G k }  is the unipolar sequence recovered from the dicode 
{d ; }  by full-wave rectification. The Pb of {&} is the same as AM1 and so is the 
Pb of {G). & is incorrect when either Ekik-l or Ck is incorrect. This is the same 
situation as we discussed for NRZ-M or N U - S  codes in Section 2.4.1. Therefore 
the bit error probability of (&} is two times 
counterparts. Using (2.58) we have 

the bit error probability of their AM1 

(Dicodes) (2.59) 
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which is shown in Figure 2.8. 

2.4.3 BER of Biphase Codes 

Bi-a-L (Munchesteq signals are antipodal binary with 

Bi-@-L signals can be detected using the optimum receiver in Figure 2.7. The cor- 
relation coefficient between them is p,, = -1. The signal energies are 

Thus the bit error probability is 

2A2T f i  = Q ({T) = Q (/$) . (Bi-@-L (Manchester)) (126 1 )  

which is the same as that of NRZ-L. This is not surprising since they have the same 
bit energy and both are antipodal. 

Conditioned Bi-a-L has a bit error probability of about two times that of Bi-a-L 
since it is just differentially coded Bi-a-L. This is to say that conditioned Bi-@-L has 
the same BER as that of NRZ-M or S. 

Bi-a-M and BI'-a-S have the same error probability. So it suffices to consider 
Bi-@-M. There are four signals in Bi-@-M: 

Each of them has energy of E = A 2 ~ .  So average bit energy is also the same. We 
can choose o,  ( t )  = sl ( t ) / f l  and 02( t )  = s 2 ( t ) / a  as basis functions. Thus 
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from (2.53) we have 

1 
Lj = Ill Pj - - x ( r i  - s i j )  2 

N , .  2 = 1  

where 

The decision rule is to choose the largest 1,. Since P, are equal for all j .  the above 
rule becomes computing 

and choosing the minimum. Thus the optimum receiver is as shown in Figure 2.10(a) 
and the decision space is two-dimensional as shown in Figure 2.10(b). Since the 
problem is symmetrical, it is sufficient to assume that sl ( t )  is transmitted and com- 
pute the resulting Pr(e/sl) which is equal to average Pb. We also can see that the 
answer would be invariant to a 45 degree rotation of the signal set because the noise 
is circularly symmetric. Thus we can use the simple diagram in Figure 2.10(c) to 
calculate the BER. 

where the two-dimensional integral is converted to the squared one-dimensional in- 
tegral because rl and rz are independent identical Gaussian variables. Changing 
variables we have 
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r(t) - s i(t) + n (t) i 

Figure 2.10 Optimum receiver and decision regions of Bi-@-M signals. 
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The BER of Bi-@-M is identical to that of unipolar codes and is 3 dB worse than that 
of NRZ-L or polar-RZ. This BER is plotted in Figure 2.8. 

2.4.4 BER of Delay Modulation 

The four symbol signals in delay modulation are the same as those of the Bi-@- 
M, and their probability distribution is also the same. Therefore the BER of delay 
modulation is the same of that of Bi-@-M 

Pa = Q (/z) , (DM or Miller) 

Like Bi-@-M, the BER of delay modulation is identical to that of unipolar codes and 
is 3 dB worse than that of NRZ-L or polar-RZ. 

2.5 SUBSTITUTION LINE CODES 

The AM1 code is a preferable choice due to its many advantages. It has a narrow 
bandwidth and no dc component. It has error detection capability due to its alternate 
mark inversion. The occurrence of consecutive positive or negative amplitudes indi- 
cates transmission errors and is called a bipolar violation. Synchronization is made 
easier due to transitions in each binary 1 bit. 

Even though synchronization of AM1 code is better than that of NRZ code, it is 
still not satisfactory. A string of 0s will result in a long period of zero level which 
will cause loss of synchronization. In the T1 system, by eliminating the all-zero 
code word from the 8-bit source encoder, the maximum number of consecutive zeros 
is limited to 14. However, for data signals even this is impractical. A solution to 
this is to substitute the block of N consecutive zeros with a special sequence with 
intentional bipolar violations. These violations enable the zero-substitution sequence 
to be identified and replaced by spaces (zeros) at the receiving end of the line. The 
pulse density is at least 1/N. This will improve bit timing recovery. Two popular zero 
substitution codes are the binary N-zero substitu~ion (BNZS) and the high dens@ 
bipolar n (HDBn) codes. 
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2.5.1 Binary N-Zero Substitution Codes 

BNZS code was proposed by Johannes et a1 in 1969 [4]. It is the most popular sub- 
stitution code which replaces a string of N 0s in the AM1 waveform with a special 
S-bit waveform with at least one bipolar violation. All BNZS formats are dc free 
and retain the balanced feature of AMI, which is achieved by choosing the substitu- 
tion sequences properly so that the conditioned sequences have an equal number of 
positive and negative pulses. 

There are two kinds of BNZS codes. One is called nonmodal code in which two 
substitution sequences are allowed and the choice between them is based solely on 
the polarity of the pulse immediately preceding the zeros to be replaced. 

For balance purposes, substitution sequences for nonmodal codes must contain 
an equal number of positive and negative pulses. They also may contain zeros, and 
the total number of zeros may be odd. The last pulse in the substitution sequences 
must have the same polarity as the pulse immediately preceding the sequence. If 
this property is not fulfilled, a unipolar pattern consisting of one, iV zeros, a one, X 
zeros, and so on, would be converted to a sequence consisting of a + (say) for the 
one. the substitution sequence, another + (to follow alternate polarity rule),6 the same 
substitution sequence, and so on, and since the substitution sequence is balanced the 
signal would have a dc component. A sequence of two opposite polarity pulses would 
satisfy the above requirements. However, it would include no bipolar violations by 
which it may be recognized at the receiving end, so it is necessary to add another 
t-wo pulses. Thus for nonmodal codes, N must be at least 4. Table 2.2 shows some 
practical nonmodal codes: B6ZS and B8ZS. All of them are balanced and the last 
pulse is the same as the preceding pulse. 

Another substitution code is called modal code in which more than two substi- 
tution sequences are provided, and the choice of sequence is based on the polarity 
of the pulse immediately preceding the zeros to be replaced as well as the previous 
substitution sequence used. For modal codes, N can be two or three. Modal code 
substitution sequences need not be balanced, and balance is achieved by properly 
alternating the sequences. To illustrate this, we refer to Table 2.2 where B3ZS is a 
modal code (also see Figure 2.11). Let B represent a normal bipolar that conforms to 
the AM1 rule, V represent a bipolar violation, and 0 represent no pulse. Then in the 
B3ZS code, a block of 000 is replaced by BOV or OOV: The choice of BOV or OOV is 
made so that the number of B pulses between two consecutive V pulses is odd. Thus 
if we consider the contribution to dc component by the signal segment since last sub- 
stitution, there will be two "extra" pulses that contribute to the dc component due to 
- - -- - - - - - - 

 his bit would be a - if the coding rule is to simply replace the .V-zero sequence, Ho\\ever. to make 
more transitions in the signal. i t  is better to follow the alternate polarity rule right after the substitution 
sequence. 
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(a) B3ZS 
Number of B pulses since last substitution 

Preceding pulse odd even 
- 00 - +0+ 

Preceding pulse Substitution sequence 

Number of B pulses since last substitution 

Preceding pulse odd even 
- 000 - -too+ 
+ OOW -00- 

Table 2.2 Substitution codes. From [19]. Copyright a 1993 Kluwer. Reprinted with permission. 

the bipolar violation. However, the polarity of these two pulses will be alternating 
since it depends on the polarity of the preceding pulse and whether the number of 
B pulses since last substitution is odd or even. All these conditions happen equally 
likely in a random sequence. Therefore in a long time average these "extra" pulses 
will cancel each other so that there will be no dc component. 

B3ZS and B6ZS are specified for DS-3 and DS-2 North American standard rates, 
respectively, and B8ZS is specified as an alternative to AM1 for the DS- I and DS- 1C 
rates. Figure 2.1 1 shows examples of some substitution codes. 

Spectrum calculation of BNZS codes is based on a flow graph of the pulse states 
and is quite involved. The spectrum obviously depends on the substitution sequence 
used and the statistical property of the data sequence. Refer to 141 for detail. Figure 
2.12 shows spectra of some substitution codes 141, where F/Fbit is the frequency 
normalized to the bit rate Fbit. 

No results of bit error probability of BNZS codes are available in the literature. 
Since they are conditioned AM1 codes we may conjecture that their bit error rates 
at the detector must be very close to those of AM1 codes. However, there are more 
errors due to failures to recognize the substitution sequences in the decoder. 



Digital Modulation -Techniques 

B = normal bipolar pulse 
V = bipolar violation 

Figure 2.11 Substitution codes. From 1191. Copyright @ 1993 Iiluuw. Reprinted with permission. 

2.5.2 High Density Bipolar n Codes 

Croisier proposed HDBn code and compatible high density bipolar n (CHDBn) code 
in 1970 121. CHDBn may be considered as an improved version of HDBn since 
CHDBn coding and decoding hardware is somewhat simpler [z]. 

The common feature of these two codes is that they limit the number of consec- 
utive 0s to n by replacing the (n+l)th 0 by a bipolar violation. In addition, to avoid 
dc component, they are made modal. That is, they each have more than one possible 
substitution sequence. The substitution sequences are: 

HDB BOO, - . - , O V  or 0 0 0 ,  - , O V  

CHDB 0 0 ,  - . - , O B O V  or 00, . - . , O O O V  

where bits omitted are all zeros. There are total n zeros in each of the sequences. 
The choices of the sequences must be such that the number of B pulses between 

two consecutive V pulses is always odd. It can be easily verified that the polarity of 
V pulses will always alternate so that a long sequence will produce virtually no dc 
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Figure 2. I2 PSDs of some substitution codes. From [2]. Reprinted by permission from IBM Journal of 
Research and Development, copyright 1970 by lnternational Business Machines Corporation. 
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component. 
Two commonly used HDBn codes are HDB2 and HDB3. HDB2 is identical 

to B3ZS. HDB3 is used for coding of 2.048 Mbps, 8.448 Mbps, and 34.368 Mbps 
multiplex within the European digital hierarchy [ ~ o J .  Its substitution rules are shown 
in Table ?.Z(d). An example of HDB3 is shown in Figure 2.11. 

2.6 BLOCK LINE CODES 

So far the codes we discussed are bit-by-bit codes, in which each input bit is translated 
one at a time to an output symbol. In a block code input bits are grouped into blocks 
and each block is translated into another block of symbols. The purpose of using 
block codes is to introduce redundancy in order to meet one or more of the desired 
attributes of a line code as we stated at the beginning of this chapter. Two basic 
techniques used in block coding are ( I )  insertion of additional binary pulses to create 
a block of TI binary symbols that is longer than the number of information bits m,  or 
(7) translation of a block of input bits to a block of output symbols that uses more 
than two levels per symbol. The first technique is mainly used in optical transmission 
where modulation is limited to two-level (on-off) but is relatively insensitive to a 
small increase in transmission rate since optical fiber has a very wide bandwidth. 
The second technique applies to cases where bandwidth is limited but multilevel 
transmission is possible. such as metallic wires used for digital subscriber loops. 

All basic line codes described in Section 2.2 can be viewed as special cases of 
block codes. 

There are some technical terms which should be defined before we describe 
various block codes. Some of them are also used for nonblock codes, but some are 
only used in describing block codes. 

Digital sum (DS) of a digital sequence is defined as the numerical sum of the 
symbols in the sequence. Digital sum is also called dispariv. To suppress the dc 
component of a coded sequence, the sequence should have a zero digital sum or dis- 
parity. Because in many cases the DS decreases as the sequence gets longer, there- 
fore long-term DS tends to be zero even though short-term DS varies with time. It  
is important to know the maximum digital sum variation (DSV) which leads to dc 
wander. When a sequence has a finite DSY it is said to be bahnced, otherwise it is 
ztnbalanced 

A block code which chooses symbols from more than one alphabet is called 
nlphabrtic, otherwise it is nonalphabetic. 

The efficiency of a code is defined as [21] 

actual information rate 
7) = 

theoretical maximum information rate 
x 100% 
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For example, NRZ codes encode 1 bit into 1 binary symbol, the efficiency is 

AM1 codes encode 1 bit into 1 ternary symbol, the efficiency is 

The Manchester code encodes 1 bit 

r l =  

Log, 3 

into 2 binary symbols, the efficiency is 

log, = 50% 
2 log, 2 

2.6.1 Coded Mark Inversion Codes 

Fiber optical communication systems use baseband modulation, not bandpass mod- 
ulation, since the transmission of a symbol is represented by the intensity of the light 
of the optical source, namely the laser diode. Even though AM1 has been widely 
used in digital coaxial or pair cable systems due to its merit described before, it can 
not be used in fiber optical systems since it uses three levels7 and thus suffers from 
nonlinearity of the laser diode. A promising solution for avoiding this difficulty is 
to replace the zero level of AM1 with two-level waveforms. This leads to two-level 
AM1 codes including coded mark inversion (CMI) scheme and differential mode in- 
version (DMI) scheme. 

CMI was first proposed by Takasaki et a1 in 1976 [6] for optical fiber systems. 
CMI uses A or -A for a binary 1 for a full-bit period. The levels A and -A are 
alternated for each occurrence of 1. The 0s are represented by a pulse with level A 
for the first half bit and -A for the second half bit, or vice versa. CMI can be also 
viewed as 1 bit to 2 bits coding ( 1  B2B) with 1-00 or 1 -+ 1 1,  alternatively and 0-0 1 
only (or O-, 10 only). An example of CMI is shown in Figure 2.13. 

CMI improves the transition density significantly. It also has error detection fea- 
ture through the monitoring of coding rule violation. Decoding is done by comparing 
the second half bit with the first half bit so that it is insensitive to polarity reversals. 
Compared with AM1 codes, the disadvantage of this code is that the transmission 
rate is twice that of the binary input signal. 

CMI is chosen for the coding of the 139.246-Mbps multiplex within the Euro- 
pean digital hierarchy [20]. 

A negative I corresponds to laser diode off. zero to 1/2 intensity. and positive I to full intensity. 
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Figure 2. I3 CMI and DM1 waveforms. 

The signal format of CMI cannot be described by (2.11) since it uses two wave- 
forms (1, l)  or (-1,l) for each bit. Nor can it be described by first-order Markov 
process since the mark is alternately inverted which implies that the current bit state 
may depend on a bit state long before the current one. Therefore its R(T)  is found by 
a computer Monte Carlo simulation as shown in Figure 2.14(a). Also shown is the 
R ( r )  (Figure 2.14(b)) found by approximating CMI by first-order Markov process. 
which is quite close to the simulated one. The simulated R(T)  can be decomposed 
into two parts as shown in Figure 2.14 (c, d), where (d) is periodical. By taking the 
Fourier transforms of (c) and (d) analytically the PSD is given by 

which is plotted in Figure 2.14(e), where A = 1 for unity average bit energy. The 
periodical part of R(r )  manifests itself as a series of impulses at odd multiples of 
data rate in the spectrum. The sudden drop in the P&(B) curve is due to the impulse 
at f = Rb in the PSD. The bandwidths are BnUlI = 2.0Rb, Boo% = 2.92Rb, and 
B99x 28Rb. 

Note that the above spectrum of CMI is calculated with two levels o f f  A. that 
is. the code waveform is bipolar. For optical transmission these two levels would be 
.4 and 0, that is, the code waveform is unipolar. This level shift will not change the 
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Figure 2.14 CMI correlations and spectrum: (a) simulated R ( T ) .  (b) approximate R(T) .  (c) nonperi- 
odical part o f  the simulated R ( T ) ,  (d) periodical part of the simulated R(T) .  (e) PSD. (f) out-of-band 
power. 
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spectral shape. but only causes the spectrum to have a dc component which can be 
represented by 4 fi( f ). and the continuous part must be multiplied by a factor of $ . 
The null bandwidth B,,,ll = 2.0Rb. The energy within bandwidth Rb is 79.1%: and 
just above Rb is 99.7%' due to the jump caused by O . l O l 6 (  f )  at f = Rb. Therefore 
B!,os:, and BggX cannot be found. 

We calculate the BER of CMI for the bipolar case which can be used in metallic 
wired systems. We will discuss the unipolar case for optical systems where CMI 
finds its primary use shortly. In the bipolar case, CMI is a ternary signal with 

All three signals have the same energy: E = A ~ T .  s2 ( t )  is orthogonal to s l  ( t )  
and s3 ( t ) .  SO we can choose 0, ( t )  = / v'?? and 0, ( t )  = s2 ( t ) /  as the basis 
functions. The third signal s3 ( t )  = ( t ) .  Thus from (2.53) we have 

where 

Thus the decision space is two-dimensional as shown in Figure 2.15. The decision 
rule is to choose the largest. For 1 to be the largest we must have l l  > l 2  and 1 > I:,. 
from these relations we can deduce that 

H1 is true if 1-1 > 0 and rl > 1'2 + ,3 

\-v here 

similarly we can deduce that 

H2 is true if - (r2 + ;-I) < r1 < ( r 2  + 3)  
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Figure 2.15 CMl decision space. 

and 

H3 is true if rl < 0 and rl < - ( r z  + 3) 

Therefore there are three decision boundaries as shown in Figure 2.15. The 
optimum receiver consists of two correlators for computing rland r2 (see Figure 
2.1 O(a)). 

The average bit error probability is 

Due to the geometrical symmetry of decision regions Z1 and Z3 and the fact that 
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p3 = p l .  we have 

Integrating and omitting detail, the f i  is found as 

l o o  1 x2 in2  
pb = lh5l0 z e ~ ~ ( - T ) ~ + -  a - a - z)dx 

00 1 x2 In 2 
--I&(-- - a + x)dx, (CMI) (2.66) 

CL 

where 

If we ignore the boundary bias for high SNR and set boundaries as bisectors between 
signals, then we can get the approximate Pb by replacing ln2  with 0 in the above 
expression: 

(CMI, for high SNR) 

Moreover, if we ignore the error probability between sl and 33, then only error prob- 
ability between sl and s2 or ss arid s2 is considered. Thus Pb can be approximated 
as 

P Q ) . (CMI, approximation) 

which is the same as that of unipolar codes. Expressions (2.66) and (2.67) are numer- 
ically evaluated. They are plotted in Figure 2.8 under the same label of AM1 codes 
since they are very close to each other and are indistinguishable. 

For optical transmission, the -A level in the CMI signal set would be 0. Not 
only are the pulses unipolar, but also many other factors that are particular to optical 
systems must be considered in calculating the BER. The required power p, to achieve 
a desired error rate has been studied in (221 for straight binary formats (unipolar NRZ- 
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L). It can be expressed as 

where 

and where 
E = constant that depends on the error rate and bit rate, 
Z = thermal noise contribution, 
Ii = shot noise contribution that would be caused by the optical pulse in the ith 

time slot (i = 0 corresponds to the time slot under decision), 
C = total shot noise contribution, 
x = excess noise factor for APD (avalanche photodiode). 
Takasaki et a1 161 showed that a slight modification of the above expressions 

provides the required optical power for other pulse formats, including CMI and DMI. 
For CMI and DM1 the following substitutions in (2.69) will provide the required 
optical power for direct transmission 

The BER of edge-detected CMI data transmission over the AWGN channel was 
given in (231 as 

where B is the equivalent noise bandwidth of the receiver low-pass filter. 

2.6.2 Differential Mode Inversion Codes 

DM1 is another two-level AM1 scheme proposed by Takasaki et al in 1976 [6] for 
optical fiber systems. Its coding rule for binary 1s is the same as that of CMI. Its 
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coding rule for binary 0s is different: 0+01 or 0-- I0 so that no pulses in a sequence 
have pulse widths wider than T, the bit duration. An example of DM1 is shown in 
Figure 2.13. For optical applications, the DM1 code is unipolar. If DM1 is used for 
metallic applications. it could be made bipolar. 

The PSD of the unipolar DM1 was found using a code flow graph method by 
Yoshikai in 1986 1161 as 

where G( f )  is the Fourier transform of the line pulse waveform which has the width 
of T = T/2  and p is the occurrence probability of mark. For equiprobable data 
sequence. p = 0.5, the above expression reduces to 

For the rectangular pulse (NRZ pulse) with amplitude A, it becomes 

1 (AT  sin T f ~ / 2 )  
%(f) = - - sin2 ;r f T/2  T / 2  2 irfTl2 

- 
sin n f T / 2  

- ( T,2 ) sin2 7 / T / ? .  
2 

(continous part of the PSD of the unipolar DMI) (2.7 1 ) 

The energy under the PSD curve is only half of the bit energy. This implies that 
the above PSD expression is the continuous part of the PSD of the unipolar DMI. 
Another half of the energy is in the dc component which can be represented by a delta 
function $( f ). I t  has the first null at fT = 2. The bandwidths are B,,,II = 2.0Rb. 
Bgox 2 1.27Rb, and BgDm 15Rb. 

When DM1 is bipolar, then (2.7 1) should be multiplied by a factor 2 to represent 
the entire PSD. In this case its PSD has the same form of the PSD of biphase codes 
(2.41). I t  has the first null at f T = 2. The bandwidths are B,,,ll = 'Z.ORb. ElgoSr, -'. 
3.05Rb. and BggX * 29Rb. 

I t  is not surprising that the PSD of the bipolar DM1 is the same as that of biphase 
codes. In fact bipolar DM1 is the same code as Bi-@-S code even though their coding 
rules are presented differently. One can easily verif). this claim by simply coding a 
sample sequence using their rules. DM1 is also called frequency shift code (FSC) 
in a paper by Morris [XI, where other simple codes for optical transmission are also 
presented. 

Since bipolar DM1 code is equal to Bi-a-S code, we can therefore detect it using 
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Figure 2.10(a) and use (2.62) for its BER calculation. For unipolar DM1 which is 
used primarily in optical systems we can use (2.69) and (2.70) to calculate required 
optical power for a given BER and bit rate. 

2.6.3 rn BnB Codes 

CMI and DM1 can be interpreted as two special cases of a larger family of block 
codes called mBnB codes. An mBnB code converts 77-2 binary digits into n binary 
digits with m < n.  CMI and DM1 are I B2B codes. Biphase codes are also I B2B 
codes. 

When n = m + 1, the codes are rnB(m+l)B codes which are popular in high 
speed-fiber optical transmission. Besides CMI, DM1 and biphase codes which be- 
long to this class, there are other mB(m+ l)B codes. CMI and DM1 have a poor 
efficiency. CMI and DM1 encode logic 1 into a binary symbol and a logic 0 into two 
binary symbols; the efficiency is 

To increase the efficiency, a larger m must be chosen. 
Following is a rather complete collection of mBnB codes proposed in literature. 

2.6.3.1 Carter Code 

Carter proposed a code in 1965 for PCM systems 151. It is an mB(m+l)B code. The 
coding rules are as follows. The eight-digit character of a PCM channel is transmit- 
ted either unchanged or with the digits inverted (i.e., marks for spaces and spaces for 
marks), depending on which condition will reduce the total disparity since transmis- 
sion commenced. Thus there will never be any continually increasing disparity, and 
the dc component will be zero over a long period. In order to indicate to the receiver 
whether the character is to be passed to the PCM terminal unchanged or re-inverted. 
the encoder at the transmitter precedes the character by a parity-control digit. the 
polarity of which gives this information. Thus this Carter code is an 8B9B code. 
Its efficiency is 94.64%. It is clear that this code can also apply to characters of any 
length. To apply it to an input having no character structure, the only additional thing 
to do is to define "characters* or blocks. 

With Carter code, completely unrestricted binary input digits can be transmitted. 
This is not strictly true for the AM1 codes since synchronization will be lost if long 
strings of zeros or marks are present. However, the substitution codes proposed later 
(1969) 141, described in Section 2.5, can also overcome the problem of AMI. 
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lablc 2 .3  Number of code words with various disparities. From 1251. Copyright 1969 IEE. 

m+ l 

2 

4 

6 

8 
10 

2.6.3.2 Grifiths Code 

Words having disparity o f  

0 +2 +4 +6 +8 +I0 

2 1 

6 4 1 

20 IS 6 1 
70 56 28 8 1 

252 210 120 42 10 1 

This code is a type of mB(m+ l)B codes. It was proposed by Grifiths (1969) 1251 as 
an improvement on the Carter code in which strings of similar digits of length 2m + 2 
may still occur for a block length of m. Griffiths checked numbers of possible code 
words with various lengths and disparities. If m is odd, the number of zero-disparity 

words of length rn + 1 is ( ) and the number of words having positive dis- 

parity is 2"l - ( ) 12. There are the same number having negative disparity 

If words of opposite >isparity are paired for transmission of alternate disparity words, 

there will be a total of 2" + ( ) 12 words and pairs available. This is suf- 

ficient to translate a block of r-n binary digits, leaving ( ;tl: ) /2 code words 

spare. The number of code words for the first several values of 7n are listed in Table 
2.3. 

For 112 + 1 equals two, there are two zero-disparity words (i.e., 0 and 1 may be 
translated to 0 1 and 10). This is in fact the Manchester code. The bit rate is doubled 
after coding. 

Particular attention is drawn to the cases in which m + 1 equals four and six. In 
both cases, translation may be achieved using only zero-disparity words and double- 
disparity words. For m+1 = 6 (i.e., 5B6B code), we can use all zero-disparity words 
and only those double-disparity words not having four same successive digits. The 
coding rules are shown in Table 2.4. For a block of five digits containing two ones. 
transmit it followed by a one. For a block containing three ones, transmit it followed 
by a zero. Twenty of the 32 possible blocks may be transmitted this way with zero 
disparity. The remaining 12 blocks are translated into double-disparity words. On 
alternate occasions, these double-disparity words are transmitted inverted. Words of 
opposite sign are sent alternatively. Thus the dc component of the line signal will be 
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00111 

01011 

01101 

01110 

transmitted as 10011 

x x x x X l  10101 

10110 

11001 

l lOI0 

11100 

transmitted as 

transmitted as 
x x x x x o  

Translation table for 5B6B Griffiths code. From [25] .  Copyright @ 1969 IEE. 

zero. This code never has more than six consecutive digits of the same type. The 
rate increase is only 20%. 

When this method is used to encode blocks of three bits (i.e., 3B4B), a set of 
suitable translation rules is shown in Table 2.5. The increase of transmission rate is 
3396, higher than that of 5B6B Griffiths code. Similarly seven bits may be encoded 
into eight. However, use of quadruple-disparity words would have to be made to 
provide sufficient translations. In general, the complexity of higher-order encoders 
would appear to be excessive. 

2.6.3.3 PAM-PPM Code 

This code was proposed by Bosotti and Pirani (1 978) [26] for optical communications. 
Coded bits 00, 10, and 01 are mapped to signals a, b, and c with one corresponding 
to a positive pulse for a duration of 8T (0 < B < 1) and zero corresponding to zero 
level for (1 - 0)T. Each of them is a pulse-amplitude and pulse-position modulated 
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} transmitted as X X X 0 

01 1 

000 0100 1011 
transmitted as or alternately 

1 1 1  0010 i 101 

I2blc 2.5 Translation table for 3U4B Grifiths code. From (251. Copyright @ 1969 IEE. 

signal, hence the name. The coding rules are shown in Table 2.6. This is in fact a 
3B4B code with 0 and I in code words occupying different lengths. 

The PSD of this code with 0 = 112 has the first null at f = 2&, which is the 
same as a straight PAM signal with pulse width of T/2. However, the PSD shows 
strongly reduced low-frequency components. The rectified PAM-PPM pulse train 
contains an abundant timing frequency component. The longest time interval without 
signal level change is 3T. 

2.6.3.4 2B3 B dc-Constrained Code 

This code was proposed by Takasaki et a1 (1976) [ 6 ]  Conventional codes try to sup- 
press the dc component [I]. It is shown in [27] that such codes cannot provide the ca- 
pability of error monitoring, since they use up most of the redundancy in suppressing 
the dc component. The 2B3B dc-constrained code uses a different approach. It con- 
strains the dc component instead of suppressing it and thus makes it possible to use 
the redundancy for error detection also. Table 2.7 shows the translation rules. The 
data bits 1 and 0 are converted to + and -, respectively. Then a third symbol + or - 
is added to make combinations of one + and two -s (mode I ) .  The data pair I 1  can 
not meet this requirement. Therefore modes 1 and 2 are used alternately for this pair 
to produce one + and two -s on the average. This code produces a dc component 
of - l S .  However, it does not suffer From dc wander since the dc component is con- 
stant regardless of data pattern. In terms of timing information. the average number 
of changes of levels per block ranges from 1 to 2. The longest succession of same 
levels is 7. 

2.6.4 m B 1C Codes 

This code belongs to a class of codes called bit insertion codes which are popular in 
high-speed optical transmission. 
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Binary signal I PAM-PPM signal 

Table 2.6 PAM-PPM code. From (261. Copyright @ 1978 IEE. 

Binary I 2B3B code 
I Mode I Mode 2 

Table 2.7 2B3B dc-constrained code. From (61. Copyright @ 1983 IEEE. 
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The mBlC code was proposed by Yoshikai et a1 for optical fiber transmission in 
1984 (81 in order to raise the speed limit achieved by CMI, DMI, and mBnB codes. 
In the coding process, the speed of input signal is increased by ( m  + I ) / ? n .  then a 
complementary bit is inserted at the end of every block of r n  information bits. The 
inserted bit is complementary to the last bit of the rn information bits. The coding 
rule is very simple therefore sophisticated electronic circuits at high speed required 
by mBnB codes can be avoided. The increase in code rate is smaller, only l /rrr .  
when compared with CMI and DM1 which require a code rate twice as fast as the 
information rate. 

With the m B l C  code the maximum number of consecutive identical symbols is 
Ire + 1 which occurs when the inserted bit and the m succeeding bits are the same. 
In-service error can be monitored using an XOR applied to the last information bit 
and the complementary bit. This code has been adopted in a Japanese 400 Mbps 
optical system in the form of 1 OB 1C. 

The spectral of this code contains continuous part and discrete components. If 
the mark rate in the information sequence is 1/2, only a dc component exists. The dc 
component is due to the fact that the code is unipolar. If the mark rate deviates from 
112, the PSD contains harmonic spectra with a hndamental component of l / ( r n  + 
1)T. The harmonic spectra are caused by the fact that when mark rate is not 112, the 
occurrence probability for a mark in the C bit is also not 1/2; instead it is inversely 
proportional to that in the information bit. The harmonic spectra cause jitter. A 
scrambler can be used to scramble the mB lC coded sequence hence suppress these 
harmonics. 

2.6.5 DmB1 M Codes 

Drfferrntiai m binary with I mark insertion (DmBIM) code is proposed by Kawan- 
ishi and Yoshikai et a1 ( 1  988) for very high-speed optical transmission p]. The coding 
rule is rather simple. In the coding process, the speed of input signal (P) is increased 
by ( m  + l ) /m,  then a mark bit is inserted at the end of every block of 771 informa- 
tion bits. The mark-inserted signal (Q) is converted to the DmB l M code (S) by the 
following differential encoding equation: 

where Sk and Qk denote the kth signal bit of S and Q, respectively. The symbol 1 .  
denotes XOR. A C bit (complementary bit) is generated automatically in the coding 
process. This can be seen as follows (the inserted bit Q,,+ is always equal to 1): 



Chapter 2 Baseband A4odulation (Line Codes) 

That is, the (m + 1)th bit is always complementary to the mth bit. So the S sequence 
is an mB 1 C code. Decoding is accomplished by equation 

and the original signal P is then recovered through mark deletion and m / ( m  + 1) 
speed conversion. 

Like mB I C code, DmB 1 M limits the maximum length of consecutive identical 
digits to (m + 1) and provides error detection through monitoring of the inserted 
bit every (m + 1) bits. Unlike mBlC code, however, it can be shown that the mark 
probability of the coded sequence is always 1/2 regardless of the mark probability of 
the information sequence 191. Thus there are no jitter-causing discrete harmonics in 
the spectrum except the dc component. 

When m is small, the continuous part of the spectra of both mBlC code and 
DmB 1 M code are similar to that of AMI, which ensures that high-frequency and 
low-frequency components are suppressed. As the block length m increases, how- 
ever, the spectrum flattens and assumes the shape of the spectrum of a random signal, 
having nonzero components near the zero frequency. The problem of spectrum con- 
trol in mB(m+l)B codes can be solved by adding further coding 1101 or using scram- 
bling techniques [ I  I]. And the PFmB(m+l)B code described next can overcome the 
spectrum problem to some extent. 

2.6.6 PFmB(m+l)B Codes 

This partially flipped code or PFmB(m+ I)B code was proposed by Krzymien (1  989) 
[lo]. It is balanced, with minimum rate increase ( l / n ) ,  and easy to encode and 
decode. Thus it is suitable for high-speed optical systems. 

The coding process of a PFmB(m+l)B code consists of two stages: precod- 
ing and balanced coding. In the precoding stage the input binary sequence {Bi} is 
grouped into blocks of m bits (m is an odd number) to which an additional bit B,n + I 

is added according to the rule 

The added bit will serve a check bit in decoding as will be seen shortly. 
In the second stage, the precoded input words B = [B1, B2: . . , B,n+l] are 

mapped into the binary codewords C = [Cl , C2. . . . , C,+ according to the rule 

Bi if D(n)  x WRDS(n - 1) 5 0 - 
Bi i f D ( n ) x W R D S ( n - 1 ) > O  (2.73) 

fori  = 1 . 2 : - - . m  
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and 

where - 
B, is the complement of Bi. 
D(rr) is the disparity of the nth precoded word B,. which is determined by 

assigning -0.5 to a binary zero and 0.5 to a binary one and summing them up. 
WRDS(n -- 1) is the value of the running digital sum (total disparity) at the end 

of the ( T I  - 1)th precoded word B,-, 

From (2.73) we have the following observations. If the total disparity and the 
disparity of the current precoded word have the same sign, the precoded word B is 
partially flipped, only leaving the last bit unchanged because it will serve as a check 
bit in decoding. Otherwise the precoded word B is copied to C without any change. 
This will balance the total disparity or running digital sum. 

Block synchronization in the receiver is accomplished by checking whether the 
received coded sequence {ei } satisfies the coding rules (2.72) and (2.73). High rate 
of code rule violations indicates that the system is out of synchronism. After block 
synchronism is established, decoding is performed by checking a received block 
against the code rule (2.72) (with B, replaced by et). If (2.72) is satisfied, no inver- 
sion of the bits of 2: is necessary. Otherwise, bits of have to be inverted to yield 
B. 

There are error extension cases in decoding this PFmB(m+ l)B code. However. 
this extension is very small. An example given in [ lo]  is 0.3 dB deterioration of SNR 
for r r i  = 7. a crossover probability of lo-' in an AWGN channel. The digital sum 
variation (DSV) is bounded and is (3711 - 1)/2.  The maximum number of consecutive 
like bits is also bounded and is 2 ( m  + 1). The spectrum of the code has a roll-off 
to zero at zero frequency and f = Rb. However, when input data probability is 
unbalanced sharp peaks appear at the both edges of the band. This disadvantage can 
be eliminated by scrambling. 

2.6.7 kBnT Codes 

A class of codes using three levels is called kBnT codes where k binary bits are coded 
into ( 1 1  < k)  ternary symbols. AM1 can be considered as a 1 B I T code. The most 
important codes of this class are 4B3T type and 6B4T type. Their efficiencies are 
84.1 ?Oh and 94.64%. respectively 
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Ternary transmitted 
when total disparity is 

Binary Negative Positive Word 
( 3  2 - 1  (0, 1 .  2) disparity 

Table 2.8 Translation table for 4B3T. From [21]. Copyright @ 1983 lntemational Journal of Electronics. 

2.6.7.1 4B3T Code 

The code proposed by Waters [21] is the simplest of the 4B3T class. The translation 
table is shown in Table 2.8, where disparities are calculated by assigning a weight 
of 1 to a positive mark and a weight of -1 to a negative mark. This is an alphabetic 
code since two alphabets are used. 

There are 27 (33) possible combinations of three ternary digits. In order to main- 
tain bit sequence independence, 000 is not used. All other combinations are used. We 
can allocate six binary four-bit blocks to the six zero disparity words. The remain- 
ing ten are allocated both a positive disparity word and its negative disparity inverse. 
During translation, a count is kept of the total disparity. When this is negative, pos- 
itive disparity words are selected for transmission and vice versa. This ensures that 
the transmitted code has zero dc content. The disparity is bounded and at the end of 
a word only six values of total disparity are possible ( -3, -2, -2, 0, 1 and 2, where 
0 is counted as positive). Total disparity +3 is not possible despite that word dispar- 
ity could be +3, since the word of +3 disparity is sent only when total disparity is 
negative. 
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Ternary transmitted 
Binary when total disparity is  

-2 -1orO +I 

Table 2.9 Translation table for MS43. From [2 1 ) .  Copyright @ 1968 ATT All rights reserved. Reprinted 

with permission. 

2.6.7.2 MS43 Code 

MS43 code proposed by Franaszek (1968) [ 28 ]  is also a 4B3T code. It has a more 
sophisticated three-alphabet translation table as shown in Table 2.9. 

The word disparities range from -3 to +3. There are only four possible total 
disparity states at the end of a word: -2, I ,  0 or I .  In the -2 state, only zero 
or positive disparity words are sent; in the +1 state, only zero or negative disparity 
words: and in the 0 or -1 states, only zero and unit disparity words. This allocation 
reduces the low-frequency content compared with 4B3T, making it more tolerant to 
ac coupling 1291. 

2.6.7.3 6B4T Code 

This code was proposed by Catchpole in 1975 (301. The translation table is shown 
in Table 2.10. I t  is similar in concept to 4B3T using two alphabets with both the 
zero and unit disparity words uniquely allocated to 50 of 64 possible six-bit binary 
blocks. Disparity control is achieved by pairing the f 2 and f 3 disparity words 
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And 3 cyclic shifts o f  each 

18 zero disparity and 
32 unit disparity ternary 
words always selected 

+2 disparity words + + 0 + ( +3 disparity words 

I This set is inverted when the total disparity is positive 

Table 2.10 Translation table for 6B4T. From [2 I]. Copyright @ 1975 IEE. 

allocated to the other 14 binary combinations. This code is more efficient than the 
4B3T codes, but has unbounded total disparity. However, it can be shown that with 
practical values of low frequency cut at the repeaters, this does not significantly affect 
the transmission performance provided a scrambler is used p~] .  

2.7 SUMMARY 

In this chapter we first described the differential coding technique often used in line 
codes. Then before discussing various line codes we presented a list of line coding 
criteria. They include timing information, spectral characteristic, bandwidth, error 
probability, error detection capability, bit sequence independence, and use of differ- 
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ential coding. Armed with these criteria we took a close look at the classical line 
codes. including NRZ. RZ, PT. biphase and delay modulation. 

NKZ codes include NRZ-L. NRZ-M. and NRZ-S. NRZ-M and NRZ-S are differ- 
entially encoded forms of NRZ-L. They are the simplest in terms of coding rules and 
have a narrow bandwidth (B,,,rr = Rb),  but lack most of the other desired charac- 
teristics. All NRZ codes have a similar BER with NRZ-L's the lowest and NRZ-M's 
and NRZ-S's slightly higher. 

RZ codes increase the density of transitions which is good for timing recovery, 
but their bandwidth is doubled (B,, ,// = 2&). Polar-RZ has the same BER as that 
of NRZ-L. Both unipolar-NRZ and unipolar-RZ have the same BER which is 3 dB 
inferior than that of NRZ-L. Spectra of NRZ and RZ codes have major energy near 
dc. which is not suitable for ac-coupled circuits. 

PT codes include AM1 ( N U  and RZ), and dicodes (NRZ and RZ). AM1 codes 
have a narrow bandwidth (B,,,u = Rb), and most importantly, have no dc frequency 
component and near-dc components are also small. This makes AM1 codes suitable 
for ac-coupled circuits. However, the three-level signaling of AM1 codes makes BER 
performance about 3 dB worse than polar NRZ codes. Dicodes are related to AMI by 
differential encoding. So they have the same spectra as those of AMI codes and their 
BER performance 1s also close to but slightly higher than that of AM1 codes. The lack 
of-transitions in a sning of 0s in AM1 codes and dicodes may cause synchronization 
problems. Thus AM1 codes with zero extraction were proposed to overcome this 
disadvantage. 

Biphase codes include Bi-a-L, or Manchester, Bi-@-M, Bi-a-S, and conditioned 
(differential) Manchester. All of them have the same spectrum which has a B,,,,Il = 
3&. However, the spectral shape is better than RZ's in that the dc and near-dc com- 
ponents are eliminated. In terms of BER; Manchester and conditioned Manchester 
are similar. The BER of Manchester is identical to that of NRZ-L. The BER of condi- 
tioned Manchester is slightly higher. The BER performance of Bi-a-M and Bi-a-S 
are the same. which is 3 dB worse than that of Manchester. Biphase codes always 
have at least one transition in a symbol, thus timing information is adequate. Due to 
its superb merit, ~ a n c h e s t e r  code, especially the differential form, is widely used. 

From the above discussion we see that AMi and Manchester have stood out as 
two most favorite codes. Both have small near-dc components. Manchester is 3 
dB better than AM! in terms of BER. But AMi requires only half of the bandwidth 
required by Manchester. Manchester also provides better timing information than 
AMI. 

Delay modulation has a very narrow bandwidth with a main lobe of about 0.5Rb. 
However. its BER performance is 3 dB worse than that of NRZ-L. Its timing infor- 
mation is not as much as that of biphase codes, but is more than what other codes 
can provide. It is a potential competitor to AM1 and Manchester. even though its 
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practical use has not been reported in literature. 
In the rest of this chapter we discussed more complex codes, including substi- 

tution codes and block codes. Substitution codes are designed for suppression of 
long all-zero strings. Two important substitution codes, BNZS and HDBn (including 
CHDBn) are discussed. All of them are based on AM1 codes. By suppressing con- 
secutive zeros, the lack of timing information of original AM1 codes are overcome. 
Thus these codes are very competitive against Manchester, especially in bandlimited 
systems. 

Block codes are designed to introduce redundancy to meet one or more of the de- 
sirable characteristics of a code. Their drawback is the increase in the transmission 
rate. They are widely used in optical fiber transmission system where wide band- 
width is available. There are a great number of block codes. Important codes which 
are used in practical systems include the following codes: CMI and DM1 which are 
two-level AM1 codes, are designed to replace AM1 in optical fiber system. A general 
class of binary block codes which can replace AM1 are the mBnB codes. For high- 
speed optical transmission, simple coder and decoder are desirable and rate increase 
should be kept at minimum, thus simple codes in the class, like mB(m+l)B, mB I C, 
and DmB 1 M are proposed. A11 of them only add one redundant bit to the original bit 
block, thus keep the rate increase at the minimum. All of them have simple coding 
and decoding rules, thus high speed can be achieved. 

Block codes are not limited to binary. Multiple-level block codes can increase 
the efficiency of the line codes. Popular multiple-level codes are ternary codes such 
as 4B31, MS43, and 6B4T They are designed to have a zero or constant dc compo- 
nent and bounded disparity. They may not be used for optical system due to multiple- 
level signaling. 
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Chapter 3 

Frequency Shift Keying 

We have seen in chapter one that there are three basic forms of digital bandpass mod- 
ulations: amplitude shift keying (ASK), frequency shift keying (FSK), and phase 
shift keying (PSK). FSK is probably the earliest type of digital modulation used in 
the communication industry. In this chapter we first describe in Section 3.1 binary 
FSK signal, modulator, and its power spectrum density. Then we present the coher- 
ent demodulator and error probability in Section 3.2. Next we discuss noncoherent 
demodulation and error probability in Section 3.3. M-ary FSK (MFSK) is given in 
Section 3.4. Section 3.5 discusses FSK demodulators using conventional discrimina- 
tor and other simple techniques. Section 3.6 is a brief discussion of synchronization. 
Finally we summarize the chapter with Section 3.7. 

3.1 BINARY FSK 

3.1.1 Binary FSK Signal and Modulator 

In its most general form, the binary FSK scheme uses two signals with different 
frequencies to represent binary 1 and 0. 

where and Q2 are initial phases at t = 0, and T is the bit period of the binary data. 
These two signals are not coherent since and iP2 are not the same in general. The 
waveform is not continuous at bit transitions. This form of FSK is therefore called 
noncoherent or discontinuous FSK.  It can be generated by switching the modula- 
tor output line between two different oscillators as shown in Figure 3.1. It can be 
noncoherently demodulated. 
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( Multiplexer 

line 

- 

- 

Figure 3.1 Noncoherent FSK modulator. 

Oscillator 2 

$ ( ~ ) = A c o s ( ~ z ~ ~  t-) 

The second type of FSK is the coherent one where two signals have the same 
initial phase at t = 0: 

f2 ,a* 
B 

4 

This type of FSK can be generated by the modulator as shown in Figure 3.2. The 
frequency synthesizer generates two frequencies, f and f2, which are synchronized. 
The binary input data controls the multiplexer. The bit timing must be synchronized 
with the carrier frequencies. The detail will be discussed shortly. If a 1 is present, 
s l ( t )  will pass and if a 0 is present, s 2 ( t )  will pass. Note that sl (t) and s z ( t )  are 
always there regardless of the input data. So when considering their phase in any bit 
interval kT 5 t 5 ( k  + 1)T, the starting point of time is O? not kT. 

For coherent demodulation of the coherent FSK signal, the two frequencies are 
so chosen that the two signals are orthogonal: 

Cont.01 

Binary data input a 
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Frequency 
synthes iser 

Binary data input ak 

Figure 3.2 Coherent FSK modulator. 

That is 

(k+ l )T  

6, cos(27r f l t  + @) cos(2x f2t + @)dt 

[cos[2n(fi + fi)t + 2@] + cos 2n( f - fi)t]dt 

This requires that 2 ~ (  f l  + fi)T = 2727r and 27r(fl - fi)T = mr? where n and m 
are integers. This leads to 
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Thus we conclude that for orthogonality f 1 and f2 must be integer multiple of 1/4T 
and their difference must be integer multiple of 1/2T. Using A f we can rewrite the 
two frequencies as 

where fc is the nominal (or apparent) carrier frequency which must be integer mul- 
tiple of 1/2T for orthogonality. 

When the separation is chosen as 1/T, then the phase continuity will be main- 
tained at bit transitions, the FSK is called SundeS FSK. It is an important form of 
FSK and will be discussed in detail in this chapter. As a matter of fact, if the sepa- 
ration is k / T ,  where k is an integer, the phase of the coherent FSK signal of (3.2) is 
always continuous. 

Proof: at t = nT, the phase of sl (t)  is 

which is exactly the phase of s z ( t ) .  Thus at t = nT, if the input bit switches from 
I to 0, the new signal s z ( t )  will start at exact the same amplitude where sl (t)  has 
ended. 

The minimum separation for orthogonality between f l  and fi is 1/2T. As we 
have just seen above, this separation cannot guarantee continuous phase. A partic- 
ular form of FSK called minimum shift keying (MSK) nor only has the minimum 
separation but also has continuous phase. However, MSK is much more than an 
ordinary FSK, it has properties that an ordinary FSK does not have. It must be gen- 
erated by methods other than the one described in Figure 3.2. MSK is an important 
modulation scheme which will be covered in Chapter 5. 

Figure 3.3(a) is an example of Sunde's FSK waveform where bit 1 corresponds 
to a higher frequency f and bit 0 a lower f2. Since f and f2 are multiple of 1/T, the 
ending phase o f  the carrier is the same as the starting phase, therefore the waveform 
has continuous phase at the bit boundaries. Sunde's FSK is a continuous phase FSK. 

A coherent FSK waveform might have discontinuous phase at bit boundaries. 
Figure 3.3(b) is an example of  such a waveform, where f l  = 9/4T, f2 = 6/4T. and 
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Data 1 0 I 1 0 

(a) Sund's FSK 

(b) FSK signal wi, th discontinuous phase 

Figure 3.3 FSK waveforms: (a) Sunde's FSK, fl = 2/T, fi = 1/T, 2A f = 1/T, (b) FSK with 
discontinuous phase, fl = 9/4T, f2 = 6/4T, 2A f = 3/4T. 

the separation is 2A f = 3/4T. 
Discontinuity in waveform will broaden the signal bandwidth. Therefore the 

third type of FSK, continuous phase FSK (CPFSK), is desired. To ensure continuous 
phase in the FSK, the signal must be in the form 

where h is called modulation index, a k  = f 1 is the kth data bit. Logic 0 and I corm 
respond to binary data +1 and -1, respectively. In the parenthesis, the second term 
represents the linearly changing phase or a constant frequency deviation required by 
an FSK signal. The third term represents the accumulated phase. Since the phase in- 
crement is proportional to At = t - kT, the phase is continuous in (kT, (k + 1)T) .  
When t = (k  + 1)T, the phase accumulation is increased by zhak  and as t increases 
further, the phase changes continuously again. The frequency deviation is the deriv- 
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ative of the second term divided by 27r: A f = (hak/2TI = h/2T. Thus 

which is the ratio of frequency separation over the bit rate Ra = 1/T. The two 
frequencies are f l  = f, - h/2T,  fi = fc + h/2T. When h = 1, it becomes Sunde's 
FSK. 

We will revisit CPFSK in Chapter 6 where it will be described from a perspective 
ofcontinuous phase modulation (CPM). In this chapter we will concentrate on simple 
coherent and noncoherent FSK schemes. In the following we always assume that the 
initial phase = 0. This will simplify derivations without loss of generality. 

3.1.2 Power Spectral Density 

Now we proceed to find the power spectrum of the Sunde's FSK signal. We expand 
the Sunde's FSK signal as 

where the last expression is derived using the fact that a k  = k1. The inphase compo- 
nent A cos($) is independent of the data. The quadrature component Auk sin($!) 
is directly related to data. The inphase and quadrature components are independent 
of each other. 

In Appendix A we have shown that the PSD of a bandpass signal 

is the shifted version of the equivalent baseband signal or complex envelope Z(t)'s 
PSD Qi  (f ) 

where * denotes complex conjugate. Therefore it suffices to determine the PSD of 
the equivalent baseband signal Z( t ) .  Since the inphase component and the quadrature 
component of the FSK signal of (3.4) are independent of each other, the PSD for the 
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complex envelope is the sum of the PSDs of these two components. 

XPI ( f )  can be found easily since the inphase component is independent of data. 
It is defined on the entire time axis. Thus 

where F stands for Fourier transform. It is seen that the spectrum of the inphase part 
of the FSK signal are two delta functions. 

To find QQ( f ), refer to (A. 19) of Appendix A. It shows that the PSD of a bi- 
nary, bipolar (f 1), equiprobable, stationary, and uncorrelated digital waveform is 
just equal to the energy spectral density of the symbol shaping pulse divided by the 
symbol duration. The shaping pulse here is A sin(%), therefore 

The complete baseband 
Q , ( f )  : 

- - 2AT [cos ?rT f ] 

PSD of the binary FSK signal is the sum of QI( f )  and 

1 1 2A [cos nT f ] 
- - ) + s ( f + - ) ] + T  2T 2T - (2TfI2] ) (3.5) 

Figure 3.4(a,b) shows the baseband PSD of this Sunde's FSK for positive fre- 
quency only, where we set A = in (3.5) for a unity signal energy. So the total 
energy under the PSD curve is 1 in one side and 2 in two sides. A spectral line 
arises at fT = 0.5. This means the passband spectrum should have spectral lines 
at f = f, 31 which are the two frequencies of binary FSK. The null bandwidth 
is = 1.5Rb in baseband, thus the null-to-null bandwidth at f, is 3Rb. Figure 
3.4(c) is the out-of-band power, Pob (dB), which is defined in Chapter 2. The abscissa 
of Figure 3.4(c) is the two-sided bandwidth normalized to data rate. The abrupt drop 
in Pob is due to the delta function in the spectrum. The two-sided bandwidths at 
carrier frequency are B9()% = 1 .23Rb and Bg9% = 2. 12Rb. The transmission band- 
width thus is usually set as BT = 2Rb. 

The general spectral expression of CPFSK for index values other than 1 is more 
dificult to determine. It will be given in Section 3.4 for arbitrary index values and 
even A l  values for M-ary FSK. The derivation will be given in Chapter 6 in the 
context of continuous phase modulation. 
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Figure 3.4 PSD of Sunde's FSK: (a) linear scale, (b) logarithmic scale (dB), (c) out-of-band power (dB). 
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3.2 COHERENT DEMODULATION AND ERROR PERFORMANCE 

The coherent demodulator for the coherent FSK signal falls in the general form of 
coherent demodulators described in Appendix B. The demodulator can be imple- 
mented with two correlators as shown in Figure 3.5, where the two reference signals 
are cos(27r f t )  and cos(27r fit). They must be synchronized with the received sig- 
nal. The receiver is optimum in the sense that it minimizes the error probability for 
equally likely binary signals. Even though the receiver is rigorously derived in Ap- 
pendix B, some heuristic explanation here may help understand its operation. When 
s 1 (t) is transmitted, the upper correlator yields a signal 1 with a positive signal com- 
ponent and a noise component. However, the lower correlator output 12, due to the 
signals' orthogonality, has only a noise component. Thus the output of the summer is 
most likely above zero, and the threshold detector will most likely produce a 1 .  When 
s 2 ( t )  is transmitted, opposite things happen to the two correlators and the threshold 
detector will most likely produce a 0. However, due to the noise nature that its values 
range from -00 to m, occasionally the noise amplitude might overpower the signal 
amplitude, then detection errors will happen. 

An alternative to Figure 3.5 is to use just one correlator with the reference signal 
cos(27r f t) - cos(2s f 2 t )  (Figure 3.6). The correlator in Figure 3.6 can be replaced 
by a matched filter that matches cos(27r f i t )  - cos(27r f 2 t )  (Figure 3.7) .  All imple- 
mentations are equivalent in terms of error performance (see Appendix B). 

Assuming an AWGN channel, the received signal is 

where n(t)  is the additive white Gaussian noise with zero mean and a two-sided 
power spectral density A',/2. From (B.33) the bit error probability for any equally 
likely binary signals is 

where No/2 is the two-sided power spectral density of the additive white Gaussian 
noise. For Sunde's FSK signals El = Ez = Eb, pI2 = 0 (orthogonal). thus the error 
probability is 

where Eb = A2T/2 is the average bit energy of the FSK signal. The above Pb is 
plotted in Figure 3.8 where Pb of noncoherently demodulated FSK, whose expression 
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Threshold 
Detector 

Figure 3.5 Coherent FSK demodulator: correlator implementation. 

Threshold 
Detector 

Figure 3.6 Coherent FSK demodulator: one correlator implementation. 
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Sample at Threshold 
t = k T  Detector 

Figure 3.7 Coherent FSK demodulator: matched filter implementation. 

Figure 3.8 Pb of coherently and noncoherentl y demodulated FSK signal. 
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will be given shortly, is also plotted for comparison. 

3.3 NONCOHERENT DEMODULATION AND ERROR 
PERFORMANCE 

Coherently FSK signals can be noncoherently demodulated to avoid the carrier re- 
covery. Noncoherently generated FSK can only be noncoherently demodulated. We 
refer to both cases as noncoherent FSK. In both cases the demodulation problem be- 
comes a problem of detecting signals with unknown phases. In Appendix B we have 
shown that the optimum receiver is a quadrature receiver. It can be implemented 
using correlators or equivalently, matched filters. 

Here we assume that the binary noncoherent FSK signals are equally likely and 
with equal energies. Under these assumptions, the demodulator using correlators is 
shown in Figure 3.9. Again, like in the coherent case, the optimality of the receiver 
has been rigorously proved (Appendix B). However, we can easily understand its 
operation by some heuristic argument as follows. 

The received signal (ignoring noise for the moment) with an unknown phase can 
be written as 

The signal consists of an inphase component A cos 8 cos 27r f t and a quadrature com- 
ponent A sin 8 sin 2x f,t sin 0. Thus the signal is partially correlated with cos 2 s  fit 
and partiah'y correlated with sin 27r f i t .  Therefore we use two correlators to collect 
the signal energy in these two parts. The outputs of the inphase and quadrature cor- 
relators will be cos 19 and sin 8, respectively. Depending on the value of the 
unknown phase 8, these two outputs could be anything in (- 5, y). Fortunately 
the squared sum of these two signals is not dependent on the unknown phase. That 
is 

AT AT A ~ T ~  
(- cos 0)2 + (- sin o ) ~  = - 

2 2 2 

This quantity is actually the mean value of the statistics I? when signal si ( t )  is trans- 
mitted and noise is taken into consideration. When si (t) is not transmitted the mean 
value of 1: is 0. The comparator decides which signal is sent by checking these I? .  

The matched filter equivalence to Figure 3.9 is shown in Figure 3.10 which 
has the same error performance. For implementation simplicity we can replace the 
matched filters by bandpass filters centered at f and fi, respectively (Figure 3.1 1). 
However, if the bandpass filters are not matched to the FSK signals, degradation to 
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Figure 3.9 FSK noncoherent demodulator: correlator implementation. 
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Figure 3.10 FSK noncoherent demodulator: matched filter implementation. 
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Figure 3.11 FSK noncoherent demodulator: bandpass filter implementation. 

+ 

various extents will result. 
The bit error probability can be derived using the correlator demodulator (Ap- 

pendix B). Here we further assume that the FSK signals are orthogonal, then from 
Appendix B the error probability is 

The plot is shown in Figure 3.8. It is seen that the noncoherent FSK requires, at most, 
only 1 dB more Eb/& than that for coherent FSK for Pb 5 lom4. The noncoherent 
FSK demodulator is considerably easier to build since coherent reference signals 
need not be generated. Therefore in practical systems almost all of the FSK receivers 
use noncoherent demodulation. 

It is worth reiterating that the demodulators in Figures 3.9 through 3.11 are good 
for equiprobable, equal-energy signals. They do not require the signals to be orthog- 
onal. However, the Pb expression (3.7) is only applicable for orthogonal, equiprob- 
able, equal-energy, noncoherent signals. If the noncoherent FSK signals are not 
equiprobable, equal-energy, then the demodulators need be slightly modified. See 
Appendix B for the more general demodulators. 

We have shown in Section 3.1 that the minimum frequency separation for co- 
herent FSK signals is 1/2T. We now show that the minimum separation for nonco- 
herent FSK signals is 1/T instead of 1/2T. The two noncoherent FSK signals are 
s l  ( t )  = cos 2n fit and sz(t) = cos(27r fit + a). For them to be orthogonal, we need 

Envclopc 
~ c t c c t w  

i 

Band pass 

filter at f l  

r(t) 

' 
Samplc at Comparator - 

t = kT 

+ 

Bandpass Envclopc 
filter at f2 

C 

Detector 12 



Chapter 3 F ~ q u e n c y  Shft Keying 

That is 

cos b ~ k ( ? . + ' ) ~  cos 2a f l t  cos 27r f 2 t d t  
- s i n @ ~ ~ ~ ' ) ~ s i n 2 n f ~ t c o s 2 ~ f ~ t d t  = O  

( k + l ) T  
cos @ jk, [COS 2n( fl + f 2 ) t  + cos 27r( f l  - f i ) t ] d  

( k + l ) T  -sin@JkT [s in2r( f l+f2) t - s in2n(f l - f2) t ]d t  = O  

For arbitrary a, this requires that the sums inside the brackets be zero. This, in turn, 
requires that 2 ~ (  f l  + f 2 ) T  = k?r for the first term and 2n( f l  - f 2 ) T  = 17 for the 
second term in the first bracket, that 27r(fi + f 2 ) T  = 2mr for the first term and 
27r( fl - f 2 ) T  = 2na for the second term in the second bracket, where k ,  1, rn and 
n are integers and k > 1, m > n. The ka and la cases are included in the 2m7r and 
2n.n case, respectively. Therefore, all these requirements can be satisfied if and only 
if 

This leads to 

rn-n 
f 2  = 7 

This is to say that for two noncoherent FSK signals to be orthogonal, the two fre- 
quencies must be integer multiple of 1/2T and their separation must be multiple of 
1/T. When n = 1, the separation is the 1/T, which is the minimum. Comparing 
with coherent FSK case, the separation of noncoherent FSK is double that of FSK. 
Thus more system bandwidth is required for noncoherent FSK for the same symbol 
rate. 
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3.4 M-ARY FSK 

3.4.1 MFSK Signal and Power Spectral Density 

In an M-ary FSK modulation, the binary data stream is divided into n-tuples of 
n = log, A 1  bits. We denote all Af possible n-tuples as hl messages: mi, i = 
1 .2 .  - - - , ~ 1 . '  There are A 1  signals with different frequencies to represent these ,\I 
messages. The expression of the ith signal is 

where T is the symbol period which is n times the bit period. 
If the initial phases are the same for all i, the signal set is coherent. As in the 

binary case we can always assume Qi = 0 for coherent MFSK. The demodulation 
could be coherent or noncoherent. Otherwise the signal set is noncoherent and the 
demodulation must be noncoherent. 

From the discussion of binary FSK, we know that in order for the signals to 
be orthogonal, the frequency separations between any two of them must be m/2T 
for coherent case and m/T for noncoherent case. Thus the minimum separation be- 
tween two adjacent frequencies is 1/2T for orthogonal case and 1/T for noncoherent 
case. These are the same as those of the binary case. Usually a uniform frequency 
separation between two adjacent frequencies is chosen for MFSK. 

The derivation of the power spectral density of MFSK schemes is much more 
complicated than that for the binary case 111. Now we quote the PSD expression 
of the complex envelope of the MFSK with the following parameters: (1) The fre- 
quency separations are uniform but arbitrary, which is denoted as 2A f .  We express 
the separation in terms of modulation index h = 2A f T. (2) The M-ary messages 
are 

and the M-ary signals are 

where A is the signal amplitude and all signals have equal energies. For equiprobable 

hl may be odd in some applications. Then n can be set as the nearest integer greater than log2 h l  
Some of the m, must not be used. 
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messages, the PSD expression is given in [ I ]  as 

Other parameters are defined as 

We have plotted curves for h = 0.5 to 1.5 for A4 = 2,4, and 8 in Figures 3.12,3.13, 
and 3.14, respectively, where each abscissa is normalized frequency f T [ I ] .  Curves 
are presented for various h values to show how the spectral shape changes with h. 
Figure 3.12 is for binary FSK where h = 1 is a special case that an impulse arises 
at fT = 0.5, that is, at the two FSK frequencies. This is the Sunde's FSK. We have 
calculated and plotted its PSD in Section 3.1.2. Figures 3.13 and 3.14 are for 4-ary 
and 8-ary MSK, respectively. The multilevel cases show considerable similarity to 
the binary ones. For small values of h, the spectra are narrow and decrease smoothly 
towards zero. As h increases towards unity the spectrum widens and spectral power 
is increasingly concentrated around f T = 0.5 and its odd multiples. These are the 
frequencies of the M signals in the scheme. At h = 1, spectral lines arise at these 
frequencies. As h increases hrther the concentration is again broadened and reduced 
in intensity. For coherent orthogonal case, h = 0.5, most spectral components are 
in a bandwidth of &. Thus the transmission bandwidth can be set as BT = g. 
Similarly for noncoherent orthogonal case, h = 1.0, then BT = y. This can be 
easily seen from the curves. 

In some applications, M is odd and/or messages are not equiprobable. For this 
case the PSD expression in (3.9) is still applicable except that the parameter Ca must 
be in its original form as [I ]  

where Pi is the a priori probability of message mi. 
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Figure 3.12 PSD of MFSK: M = 2. AAer [ I ] .  

3.4.2 Modulator, Demodulator, and Error Performance 

The noncoherent modulator for binary FSK in Figure 3.1 can be easily extended to 
noncoherent MFSK by simply increasing the number of independent oscillators to 
1Lf (Figure 3.15). The coherent modulator for binary FSK in Figure 3.2 can also be 
extended to MFSK (Figure 3.16). Then the frequency synthesizer generates A1 sig- 
nals with the designed frequencies and coherent phase, and the multiplexer chooses 
one of the frequencies, according to the n data bits. 

The coherent MFSK demodulator falls in the general form of detector for M- 
ary equiprobable, equal-energy signals with known phases as described in Appendix 
B. The demodulator consists of a bank of hl correlators or matched filters (Figure 
3.17 and 3.18). At sampling times t = kT, the receiver makes decisions based on 
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Figure 3.13 PSD of MFSK: M = 4. AAer (11 
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Figure 3.14 PSD of MFSK: M = 8. After ( I ]  
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Figure 3.15 Noncoherent MFSK modulator. 

- 

" 

the largest output of the correlators or matched filters. We have to point out that 
the coherent MFSK receivers in Figures 3.17 and 3.18 only require that the MFSK 
signals be equiprobable, equal-energy, and do not require them be orthogonal. For 
more general cases where the M-ary signal set is not equiprobable and/or not equal 
in energy, a bias term 

Acos(2nf MpDJ 

N, 1 Bi = -lnPi - -Ei 
2 2 

must be included in the sufficient statistics li in the receiver (see Figures B.6 and 
8.7). 

The exact expression for the symbol error probability for symmetrical signal set 
(equal-energy, equiprobable) have been given in Appendix B (B. 42) as 

b 
4 4 A 

61 

This expression does not require the signal set be orthogonal. This expression can 
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Figure 3.16 Coherent M-ary FSK modulator. 
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Figure 3.17 Coherent M-ary FSK demodulator: correlator implementation. 
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Figure 3.18 Coherent M-ary FSK demodulator: matched filter implementation. 

not be analytically evaluated. 
If the signal set is not symmetrical, an upper bound has been obtained in Appen- 

dix B (B. 43) as 

If the signal set is equal-energy and orthogonal (not necessarily equiprobable), all 
distances between any two signals are equal. The distance d = d z ,  and the upper 
bound becomes 

For fixed A l  this bound becomes increasingly tight as Es/h', is increased. In fact, 
it becomes a good approximation for P, < For A l  = 2, it becomes the exact 
expression. 

If the signaling scheme is such that each signal represents n = log, M bits, as 
we stated in the very beginning of this section, then the P, can be expressed as a 
function of Eb = Es/  logz M. 

At this point we need to derive a relation between bit error probability Pb and 
symbol error probability P, . For binary signals Pb is simply equal to P, . For equally 
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likely orthogonal M-ary signals, all symbol errors are equiprobable. That is, the 
demodulator may choose any one of the (.&I - 1) erroneous orthogonal signals with 
equal probability2 

There are ( i )  ways in which k bits out of n bits may be in error. Hence the average 
number of bit errors per n-bit symbol is 

and the average bit error probability is just the above result divided by n. Thus 

For large values of M, Pb = 4 P,. 
I f  A,f is odd then M # 2". If the 11.1 messages are still equiprobable, the above 

expression is modified as 

Ps and Pb for coherent 1 y dernodu lated, equal-energ)! equiproboble, and arthog- 
onal M F S K  are shown in Figures 3.19 and 3.20, respectively. The solid lines are 
accurate error curves and the dotted lines are upper bounds. Note that the curves 
in these two figures are very close at high SNRs, but the differences are clear at 
low SNRs. It can be seen that the upper bound is very tight for Eb/N,  over about 
5 dB. We also observe that for the same E#, error probability reduces when A l  
increases, or for the same error probability the required &/No decreases as A l  in- 
creases. However, the speed of decrease in &/No slows down when Af gets larger. 

The noncoherent demodulator for M-ary FSK falls in the general form of detec- 
tor for M-ary equiprobable, equal-energy signals with unknown phases as described 
in Appendix B. The demodulator can be implemented in correlator-squarer form or 
matched filter-squarer or matched filter-envelope detector form (Figures 3.2 1, 3.22, 
3.23). They are the extensions of their binary counterparts. Their operations are the 
same except for the increase of number of signals. Therefore we do not repeat the 
description here. 

This is. however. not true for M-ary PSK signals since they are not orthogonal. Therefore the Ph 
versus P, relation is different, as we will see in Chapter 4. 
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Figure 3.19 P, o f  coherently demodulated, equiprobable, equal-energy, and orthogonal MFSK (dotted 
line: upper bound). 
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Figure 3.20 P ,  of coherently demodulated, equiprobable, equal-energy, and orthogonal MFSK (dotted 
line: upper bound). 
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Same as above except 
I forf~ 

Figure 3.2 1 Noncoherent MFSK demodulator: correlator-squarer implementation. 

Symbol error probability expression for noncoherently demodulated, equiprob- 
able, equal-enew, and orthogonal MFSK has been given in Appendix B (B.57) 
as 

&I-1 where ( , ) is the binomial coefficient, defined by 

The first term of the summation in (3.13) provides an upper bound (B.58) as 
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Figure 3.22 Noncoherent MFSK demodulator: matched filter-squarer detector implementation. 

For fixed Al this bound becomes increasingly close to the actual value of P, as 
E s / N o  is increased. In fact when Ad = 2, the upper bound becomes the exact 
expression. 

Figures 3.24 and 3.25 show P, and Pb for noncoherently demodulated, equiprob- 
able, equal-energy, and orthogonal MFSK for M = 2, . . . ! 32. Note that the curves 
in these two figures are very close at high SNRs, but the differences are clear at low 
SNRs. Like the coherent case, again the Pb versus P, relation is given by (3.12). 
The behavior of the curves with values of Ad is very similar to that of the coherent 
case. The only difference is that the noncoherent one requires slightly more Eb/lVo 
for the same error probability. The increase of Eb/No is only a fraction of a dB for 
Pb 5 low4 for all values of A l  and becomes smaller as Al becomes larger, 
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Figure 3.23 Noncoherent MFSK demodulator: matched filter-envelope detector implementation 
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3.5 DEMODULATION USING DISCRIMINATOR 

In comparison with other modulation schemes, such as PSK and QAM, the most im- 
portant advantage of FSK is that demodulation can be very simple. We already have 
seen that FSK can be noncoherently demodulated and the error performance degra- 
dation is less than 1 dB in a meaningful range of bit error rate. Demodulation can 
be even simpler by using the conventional frequency discriminator which is widely 
used in analog FM demodulation. 

Figure 3.26 is the block diagram of a typical binary FSK demodulator using 
limiter-discriminator detection and integrate-and-dump post-detection filtering. The 
IF filter is a narrow-band filter, with a frequency response H (  f )  centered at f,. This 
filter is to reject the out-of-band noise and restrict the frequency band of the signal. 
Although this filter is shown in Figure 3.26 as a part of the receiver, it should be con- 
sidered as the overall filtering characteristic of the transmitter filter, channel, and re- 
ceiver for analysis purposes. The demodulation is done by the limiter-discriminator 
combination which for the purpose of analysis is assumed to have an ideal char- 
acteristic, that is, the output is proportional to the angle of the input signal. The 
post-detection filter is an integrate-and-dump filter with an integration time of T. At 
the end of each bit interval the output of the integrate-and-dump filter is sampled and 
the polarity of the sample determines whether a 1 or 0 was sent. 

For a narrow-band IF filter, a set of expressions for bit error probability was first 
published in [21 The results in [2] show that for both the Gaussian and rectangular 
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Figure 3.24 P, o f  noncoherently demodulated. equiprobable, equal-energy. and orthogonal MFSK (dot- 

ted line: upper bound). 
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Figure 3 .X Ph of noncoherently demodulated, equiprobable, equal-energy, and orthogonal MFSK (dot- 

ted line: upper bound). 
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Figure 3.26 Binary FSK demodulator using limiter-discriminator detection and integrate-and-dump 
post-detection filtering. 

IF filter 
H(D 

-* 

bandpass filters, the system with a modulation index of h = 0.7 is the best in that it 
requires the least signal energy in a given noise environment to achieve a W4 bit 
error rate for bandwidths ranging from BT = 0.8 to 3.0, where B is the equivalent 
noise b ~ n h v i d t h . ~  For a given SNR and modulation index there is a bandwidth that 
gives a minimum probability of error. It might be argued heuristically that as the 
bandwidth is increased more noise power is accepted and errors increase. On the 
other hand, as the bandwidth is reduced below a certain point, error arising out of 
the distortion of the signal increases. In general it appears that a bandpass filter 
bandwidth of about B = 1/T gives a minimum probability of error. The precise 
value would depend on the shape of the filter, the modulation index, and the SNR. 
The theoretical results were generally in good agreement with experiment results 
reported in [2). 

The work in (31 provided a set of simpler expressions by restricting the noise 
equivalent bandwidth B of the IF filter in the range of 1 < BT 5 3 and the fre- 
quency deviation ratio h < 1.5. Also the SNR is assumed large (2 6 d B ) .  However, 
even the simpler expressions are too complicated to be included here. Instead we 
present the curves from 91 in Figure 3.27 for several IF filter characteristics. They 
are the Gaussian filter, the six-element Butterworth filter, and two-stage synchro- 
nously tuned filters. Their characteristics are respectively 

Wf)  = -*f 2 / 2 ~ 2 ,  (Gaussian) 

Limiter 

Wf) = (Butterworth) 
1 + (1 + j f i f l ~ ) ~ '  

The equivalent noise bandwidth of a filter H ( f )  is defined as 

--*Di~criminator+ 

r 0 or 1 
Intergate 
and dm,., 
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(two-stage synchronously tuned) 

Figure 3.27 shows the curves for the optimum index h = 0.707, and the optimum 
bandwidth BT = 1 for all three filters. The BER curves with the Gaussian and But- 
tenvorth filters are shown as a single curve since there is only a few percent difference 
in the performance with the Gaussian filter being sightly better. The performance of 
the synchronously tuned IF filters is about 0.75dB inferior to the Gaussian IF filter. 
Also shown in the figure for comparison is the performance curve for noncoherent 
orthogonal FSK which is about 0.75dB inferior to the synchronously tuned IF fil- 
ters. These results are in consistence with those reported in [2]. We would expect that 
the error performance of the optimum noncoherent FSK be better than the narrow- 
band demodulator. However, the above results show the opposite. The reason why 
this happens was not given either in (21 or in [3]. Recall that for noncoherent demod- 
ulation, the optimum demodulator consists of matched filters followed by envelope 
detectors (or equivalently, correlators). It is optimum in the sense that the matched 
filter will give a maximum SNR. But this optimization is based on the assumption 
that the filter is linear. In the narrow-band demodulator, the discriminator is a non- 
linear device. What is optimum for linear filters may not be optimum for nonlinear 
filters. This might explain why the error performance of the "optimum" noncoher- 
ent FSK is inferior to the narrow-band discriminator demodulator with the best set 
of parameters (BT = 1 and h = 0.707). 

If the IF filter's bandwidth is sufficiently broad so that distortion of the signal 
can be ignored, and the post-detection low-pass filter is approximated by an ideal 
integrator with an integration time ofT,  then a simple expression of the symbol error 
probability for M-ary orthogonal FSK signals demodulated by the discriminator is 
given in [4] as 

When compared with the optimum noncoherent receiver whose error rate behaves as 
exp[-Es/2N,] (see (3.14)) we have lost a factor of M/4 in the error exponent by 
substituting discriminator detection for matched filter detection. When A l  < 4, there 
is actually no loss, rather there is a gain in symbol error performance. When A1 = 
2. (3.15) becomes exp( -EJN,)  which is better by 3dB than the matched filter 
case. And it is 1.5 dB better that the Gaussian filter case shown in Figure 3.27. The 
previous reasoning that explains why narrow-band discriminator detection performs 
better than optimum noncoherent detection can also be applied here to explain why 
the wide-band discriminator performs better. 
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Figure 3.27 Pb of FSK demodulated by limiter-discriminator detection and integrate-and-dump 

post-detection filtering. 
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3.6 SYNCHRONIZATION 

For coherent detection of the FSK signal the reference signals cos 27 fit. i = 1,2 and 
the bit timing signal must be recovered from the received signal. However. since 
practical systems never use coherent demodulation, there are no carrier recovery 
schemes found in the literature. For the usual Sunde's FSK, since the signal has two 
strong spectral components at f and f2, two phase lock loops may be used to extract 
fi and fi from the FSK signal. 

For noncoherent demodulation, only symbol synchronization is needed. Symbol 
timing can be achieved by generating the symbol clock signal using an early/late- 
gate circuit. Since symbol timing recovery problem is common to FSK and PSK 
modulation schemes, we leave it to be discussed at the end of the next chapter on 
PSK. 

3.7 SUMMARY 

In this chapter we have discussed coherent and noncoherent binary FSK and M-ary 
FSK schemes. For both cases we looked into the conditions for phase continuity and 
signal orthogonality. For phase continuity of coherent FSK (including MFSK), we 
found that the sufficient condition is that the frequency separation is an integer mul- 
tiple of 1/57 However, this is not necessary since there is a special form of binary 
FSK, namely MSK, which has a separation of 1/2T. MSK is an important modula- 
tion scheme which is covered in great detail in Chapter 5. For orthogonality of the 
coherent FSK (including MFSK) the signal frequencies must be integer multiple of 
1/4T and the separation must be integer multiple of 1/2T. The phase of noncoher- 
ent FSK signal is not continuous and its orthogonality requires that the frequency 
separation be integer multiple of 1/T. So the minimum separation for noncoherent 
FSK is double that of the coherent one. 

The power spectral densities of FSK, both binary and M-ary, in the form of 
expressions or curves, were presented in this chapter. 

We also presented modulators and demodulators, both coherent and noncoher- 
ent, binary and M-ary, in this chapter. The coherent demodulators consist of corre- 
lators or equivalently, matched filters and samplers. They require reference signals 
that are synchronized with the transmitted signals. The noncoherent demodulators 
consist of correlators and squarers, or equivalently, matched filters and envelope de- 
tectors. They do not require that reference signals be synchronous to the transmitted 
signals. Therefore additional squarers or envelope detectors are used to eliminate the 
adverse effect of random phase difference between the reference signals and the re- 
ceived signals. Since circuits of generating synchronous reference signals are very 
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costly, most of FSK receivers use noncoherent demodulation. 
It is expected that the error performance of the noncoherent receivers is inferior 

to that of the coherent ones. However, the degradation is only a fraction of a dB. The 
expressions and curves for the error probabilities are also presented in great detail. 

Finally we explored other possible demodulations. The discriminator demodu- 
lator is simple and efficient. It is even better than the noncoherent optimum demod- 
ulator for BFSK. 
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Chapter 4 

Phase Shift Keying 

Phase shift keying (PSK) is a large class of digital modulation schemes. PSK is 
widely used in the communication industry. In this chapter we study each PSK mod- 
ulation scheme in a single section where signal description, power spectral density, 
modulator/demodulator block diagrams, and receiver error performance are all in- 
cluded. First we present coherent binary PSK(BPSK) and its noncoherent coun- 
terpart, differential BPSK (DBPSK), in Sections 4.1 and 4.2. Then we discuss in 
Section 4.3 M-ary PSK (MPSK) and its PSD in Section 4.4. The noncoherent ver- 
sion, differential MPSK (DMPSK) is treated in Section 4.5. We discuss in great detail 
quadrature PSK (QPSK) and differential QPSK (DQPSK) in Sections 4.6 and 4.7, re- 
spectively. Section 4.8 is a brief discussion of offset QPSK (OQPSK). An important 
variation of QPSK, the a/4-DQPSK which has been designated as the American 
standard of the second-generation cellular mobile communications, is given in Sec- 
tion 4.9. Section 4.10 is devoted to carrier and clock recovery. Finally, we summarize 
the chapter with Section 4.11. 

4 .  BINARY PSK 

Binary data are represented by two signals with different phases in BPSK. Typically 
these two phases are 0 and T ,  the signals are 

These signals are called antipodal. The reason that they are chosen is that they have 
a correlation coefficient of -1, which leads to the minimum error probability for the 
same &/No, as we will see shortly. These two signals have the same frequency and 
energy. 

As we will see in later sections, all PSK signals can be graphically represented 
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Figure 4.1 BPSK signal constellation. 

by a signal consrellation in a two-dimensional coordinate system with 

as its horizontal and vertical axis, respectively. Note that we deliberately add a minus 
sign in Oz ( t )  so that PSK signal expressions will be a sum instead of a difference (see 
(4.14)). Many other signals, especially QAM signals, can also be represented in the 
same way Therefore we introduce the signal constellation of BPSK here as shown 
in Figure 4.1 where sl (t) and s 2 ( t )  are represented by two points on the horizontal 
axis, respectively, where 

The waveform of a BPSK signal generated by the modulator in Figure 4.3 for a 
data stream { 10110) is shown in Figure 4.2. The waveform has a constant envelope 
like FSK. Its frequency is constant too. In general the phase is not continuous at 



Chapter 4 Phase Sh$ Keying 

Data 1 0 1 

(a) f, = 2/r 

(b) fc = 1,8R 

Figure 4.2 BPSK waveforms. 

bit boundaries. If the f, = m Rb = m/T,  where m is an integer and Rb is the 
data bit rate, and the bit timing is synchronous with the carrier, then the initial phase 
at a bit boundary is either 0 or .rr (Figure 4.2(a)), corresponding to data bit 1 or 0. 
However, if the f, is not an integer multiple of Rb , the initial phase at a bit boundary 
is neither 0 nor n (Figure 4.2(b)). In other words, the modulated signals are not the 
ones given in (4.1). We will show next in discussion of demodulation that condition 
f, = m Rb is necessary to ensure minimum bit error probability. However, iff, > > 
Rb, this condition can be relaxed and the resultant BER performance degradation is 
negligible. ' 

The modulator which generates the BPSK signal is quite simple (Figure 4.3 (a)). 
First a bipolar data stream a ( t )  is formed From the binary data stream 

This i s  true for all PSK schemes and PSK-derived schemes, including QPSK, MSK, and MPSK. W 
will not mention this again when we discuss other PSK schemes. 
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Polar NRZ source a(t) Aa(t)cosZx&t 
b 

(-k+l) 

Figure 4.3 BPSK modulator (a), and coherent BPSK demodulator (b). 

where a k  E {+I! -I}, p ( t )  is the rectangular pulse with unit amplitude defined on 
(0, TI. Then a ( t )  is multiplied with a sinusoidal carrier A cos 27r f,t. The result is 
the BPSK signal 

s ( t )  = Aa(t)  cos 2a f,t, -m :, t < CJO (4.5) 

Note that the bit timing is not necessarily synchronous with the carrier. 
The coherent demodulator of BPSK falls in the class of coherent detectors for bi- 

nary signals as described in Appendix B. The coherent detector could be in the form 
of a correlator or matched filter. The cor~elator's reference signal is the difference sig- 
nal ( s d ( t )  = 2A cos 2n f,t). Figure 4.3(b) is the coherent receiver using a correlator 
where the reference signal is the scaled-down version of the difference signal. The 
reference signal must be synchronous to the received signal in frequency and phase. 
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It is generated by the carrier recovery (CR) circuit. Using a matched filter instead of a 
correlator is not recommended at passband since a filter with h( t )  = cos 2n fc(T - t)  
is difficult to implement. 

In the absence of noise, setting A = I ,  the output of the correlator at t = (k+ l)T 
is 

( k + l ) T  

L T  
T ( t )  cos 27r f,tdt 

(k+ 1) T 

= I T  
ak cos2 2nfc td t  

a k ( l  + cos 47r f,t)dt 

Iff, = m Rb, the second term is zero, thus the original signal a ( t )  is perfectly 
recovered (in the absence of noise). Iff ,  # m Rb, the second term will not be zero. 
However, as long as fc >> Rb, the second term is much smaller than the first term 
so that its effect is negligible. 

The bit error probability can be derived from the formula for general binary 
signals (Appendix B): 

For BPSK p,, = -1 and El = E2 = Eb thus 

, (coherent BPSK) 

A typical example is that, at E b / x  = 9.6 dB, Pb = lom5. Figure 4.4 shows the Pb 
curve of BPSK. The curves of coherent and noncoherent BFSK are also shown in the 
figure. Recall the f i  expression for coherent BFSK is Pb = Q (R) which is 3 

dB inferior to coherent BPSK. However, coherent BPSK requires that the reference 
signal at the receiver to be synchronized in phase and frequency with the received 
signal. This will be discussed in Section 4.10. Noncoherent detection of BPSK is 
also possible. It is realized in the form of differential BPSK which will be studied in 
the next section. 

Next we proceed to find the power spectral density of the BPSK signal. It suf- 
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Figure 4.4 Pb of BPSK in comparison with BFSK. 

fices to find the PSD of the baseband shaping pulse. As shown in Appendix A, the 
PSD o f  a binary, bipolar, equiprobable, stationary, and uncorrelated digital waveform 
is just equal to the energy spectral density ofthe pulse divided by the symbol duration 
(see (A.  19)). The basic pulse of BPSK is just a rectangular pulseZ 

A, O < t < T  
0, otherwise 

Its Fourier transform is 

Thus the PSD of the baseband BPSK signal is 

The bipolarity of  the baseband waveform of BPSK is controlled by the bipolar data ak = &1. 
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which is plotted in Figure 4.5. From the figure we can see that the null-to-null band- 
width BnUlr = 2/T = 2Rb. (Keep in mind that the PSD at the carrier frequency is 
two-sided about f,.) Figure 4.5(c) is the out-of-band power curve which is defined 
by (2.2 1). From this curve we can estimate that Bgow = 1.7Rb (corresponding to 
-10 dB point on the curve). We also calculated that Bg9% = 20&. 

4.2 DIFFERENTIAL BPSK 

In Chapter 2 we first introduced differential encoding and decoding of binary data. 
This technique can be used in PSK modulation. We denote differentially encoded 
BPSK as DEBPSK. Figure 4.6 (a) is the DEBPSK modulator. DEBPSK signal can 
be coherently demodulated or differentially demodulated. We denote the rnodula- 
tion scheme that uses differential encoding and differential demodulation as DBPSK, 
which is sometimes simply called DPSK. 

DBPSK does not require a coherent reference signal. Figure 4.6(b) is a simple, 
but suboptimum, differential demodulator which uses the previous symbol as the ref- 
erence for demodulating the current symbol.3 The front-end bandpass filter reduces 
noise power but preserves the phase of the signal. The integrator can be replaced by 
an LPF. The output of the integrator is 

In the absence of noise and other channel impairment, 

where s k ( t )  and s k - 1  ( t)  are the current and the previous symbols. The integrator 
output is positive if the current signal is the same as the previous one, otherwise the 
output is negative. This is to say that the demodulator makes decisions based on the 
difference between the two signals. Thus information data must be encoded as the 
difference between adjacent signals, which is exactly what the differential encod- 
ing can accomplish. Table 4.1 shows an example of differential encoding, where an 
arbitrary reference bit 1 is chosen. The encoding rule is 

- - 

This is the commonly refemed DPSK demodulator. Another DPSK demodulator is the optimum 
differentially coherent demodulator. Differentially encoded PSK can also be coherentl}. detected. These 
will be discussed shortly. 
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Figure 4.5 Power spectral density of BPSK: (a) linear, (b) logarithmic, (c) out-of-band power. 
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Delay i - L ~ l  dk 

(a) DEBPSK modulator 

(b) DBPSK demodulator 

Figure 4.6 DBPSK modulator (a), and demodulator (b). 

Inversely we can recover ak from dk using 

If dk and dk-* are the same, then they represent a 1 of ak. If dk and dk- 1 are different, 
they represent a 0 of ah. This can be verified by comparing sequences I d k )  and {ak) 
in the table. The sequence {dk) is modulated onto a carrier with phase 0 or T .  In 
the absence of noise and other channel impairment, the demodulator output iik is 
identical to the message sequence. 

The preceding receiver is suboptimum, since the reference signal is the previ- 
ous symbol which is noisy. The optimum noncoherent, or differentially coherent, 
demodulation of DEBPSK is presented now. As discussed above, a message bit is 
represented by two modulated symbols. If the transmitted bit is 1, the two sym- 
bols are the same. 
represent binary 1 

Thus we can define a signal with a duration of 2T as follows to 

AcosZ~f , t ,  0 2  t I T  
Acos2?rjct, T s t  2 2 T  ' for binary 1 



132 Digital Modulation Techniques 

Message a k  1 0 1 1 0 0 0 1 1  

Encoding dk = ak (D dk-  1 1 0 0 0 0 1  1 1  

Signal phase 0 0  O - i r T 7 r O T 0 0 0  

Demodulation 
I=I (k+ l )T 
Eb Eb JkT  ~ k ( t ) ~ k - ~  (qdt 1 - 1  1 1 - 1  - 1  - 1  1 I 

Demodulator output sk I 0 1 1 0 0 0 1 1  

Table 4.1 Examples of differential coding. 

lf the transmitted bit is 0, the two symbols are different. Thus we can define 

Acos27rfct. O S t I T  
" @ ) =  { -Acos2afct, T s t 5 2 T  ' for binary 0 

Note that in the modulated signal stream, the 2T-symbols are overlapped by T sec- 
onds. 

Since we desire an optimum noncoherent demodulation, the DBPSK receiver 
may be implemented in the general forms for signals with unknown phases as de- 
picted in Appendix B. However, a simpler form is possible due to the special prop- 
erty of the signals. The simpler form avoids the squarers or matched filters. We 
derive this receiver starting from (B.55). Assuming the received signal is r ( t ) ,  the 
sufficient statistic for & ( t )  is 

where 

2T 

wl ST r ( t ) A  cos 2iiJctdt 

T 

20 1 r ( t ) A  sin 2n f,fdt 
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2T 

zl r ( t ) A  sin 2n jc tdt  

Similarly, the sufficient statistic for c,(t) is 

The decision rule is 

Substituting expressions for 1: and 1; into the above expression and cancelling like 
terms, we obtain 

For the kth symbol period, this rule is 

This rule can be implemented by the receiver shown in Figure 4.7. The reference 
signals are locally generated since phase synchronization between r ( t )  and the ref- 
erence signals is not required. However, the frequency of the reference signals must 
be the same as the received signal's. This can be maintained by using stable oscilla- 
tors, such as crystal oscillators, in both transmitter and receiver. However, in the case 
where Doppler shift exists in the carrier frequency, such as in mobile communica- 
tions, frequency tracking is needed to maintain the same frequency. In this case the 
local oscillator must be synchronized in frequency to the received signal. The refer- 
ence signals' amplitude A is set as 1 in Figure 4.7. In fact A could be any value since 
its value will not affect the decision rule in (4.9). The correlators produce wk and zk. 
The zk is calculated by the delay-and-multiply circuits or differential decoders. 

To derive the error probability of the optimum demodulator, we observe that two 
DBPSK symbols are orthogonal over [O,2T] since 

In other words DBPSK is a special case of noncoherent orthogonal modulation with 
Ts = 2T and Es = 2Eb. Hence using the result of Appendix B (B.56) we have the 
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wk 
dl c+'" A I . 

Delay 
T *k-l 

bit error probability 

r(t) 

1 
P,  = -e-Eb'No, (optimum DBPSK) 

2 

1 

Note that the demodulator of Figure 4.7 does not require phase synchroniza- 
tion between the reference signals and the received signal. But it does require the 
reference fiequency be the same as the received signal. Therefore the suboptimum 
receiver in Figure 4.6(b) is more practical, and indeed it is the usual-sense DBPSK 
receiver. Its error performance is slightly inferior to that of the optimum given in 
(4.10). 

The performance of the suboptimum receiver is given by Park in [I]. It is shown 
that if an ideal narrow-band 1F filter with bandwidth W is placed before the correlator 
in Figure 4.6(b), the bit error probability is 

which amounts to a loss of 1.2 dB and 1 dB, respectively, with respect to the optimum. 

+ 
LO 0 or 1 

I x i  - 3 xkbeh 
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Figure 4.8 Pb of differential BPSK in comparison with coherent BPSK scheme. 

If an ideal wide-band IF filter is used, then 

1 

" 2 J i i J m  
e-Eb/2N0 , for W > 1 /T , (Suboptimum DBPSK) 

Typical value of W is 1 S/T. If W is too large or too small the above expression does 
not hold [I]. The Pb for the wide-band suboptimum receiver is about 2 dB worse than 
the optimum at high SNR. The bandwidth should be chosen as 0.57/T for the best 
performance. Pb curves of DBPSK are shown in Figure 4.8. 

A differentially encoded BPSK signal can also be demodulated coherently (de- 
noted as DEBPSK). It is used when the purpose of differential encoding is to elim- 
inate phase ambiguity in the carrier recovery circuit for coherent PSK (see Section 
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4.10). This is not usually meant by the name DBPSK. DBPSK refers to the scheme of 
differential encoding and differentially coherent demodulation as we have discussed 
above. 

In the case of DEBPSK, the bit error rate of the final decoded sequence { i i k } .  
Pb is related to the bit error rate of the demodulated encoded sequence {&}. PbPd, 
by 

as we have shown in Section 2.4.1 of Chapter 2. Substituting Pb,d as in (4 .6)  into the 
above expression we have 

for coherently detected differentially encoded PSK. For large SNR, this is just about 
two times that of coherent BPSK without differential encoding. 

Finally we need to say a few words of power spectral density of differentially 
encoded BPSK. Since the difference of differentially encoded BPSK from BPSK is 
differential encoding, which always produces an asymptotically equally likely data 
sequence (see Section 2. I) ,  the PSD ofthe differentially encoded BPSK is the same as 
BPSK which we assume is equally likely. The PSD is shown in Figure 4.5. However, 
it is worthwhile to point out that if the data sequence is not equally likely the PSD 
of the BPSK is not the one in Figure 4.5, but the PSD of the differentially encoded 
PSK is still the one in Figure 4.5. 

4.3 M-ARY PSK 

The motivation behind MPSK is to increase the bandwidth efficiency of the PSK 
modulation schemes. In BPSK, a data bit is represented by a symbol. In MPSK, 
n = logz M data bits are represented by a symbol, thus the bandwidth efficiency 
is increased to n times. Among all MPSK schemes, QPSK is the most-often-used 
scheme since it does not suffer from BER degradation while the bandwidth efficiency 
is increased. We will see this in Section 4.6. Other MPSK schemes increase band- 
width efficiency at the expenses of BER performance. 

M-ary PSK signal set is defined as 
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where 

The carrier frequency is chosen as integer multiple of the symbol rate, therefore in 
any symbol interval, the signal initial phase is also one of the :\I phases. Usually J I  
is chosen as a power of 2 (i.e., III = 2n, n = log2 M ) .  Therefore binary data stream 
is divided into n-tuples. Each of them is represented by a symbol with a particular 
initial phase. 

The above expression can be written as 

A sin Oi sin 27r fct 

(4.14) 

where Q, ( t )  and q2( t )  are orthonormal basis hnctions (see (4.2) and (4.3)), and 

S i z  = 6 si (t)@z (t)dt = dE sin Oi 

where 

is the symbol energy of the signal. The phase is related with sil and ~ i 2  as 

Si2 Bi = tan - 
Si 1 

The MPSK signal constellation is therefore two-dimensional. Each signal si (t) 
is represented by a point ( s i l ,  s i z )  in the coordinates spanned by qi, ( t )  and q5 ( t ) .  
The polar coordinates of the signal are (a, 84). That is, its magnitude is &and 
its angle with respect to the horizontal axis is B i .  The signal points are equally spaced 
on a circle of radius f i  and centered at the origin. The bits-signal mapping could be 
arbitrary provided that the mapping is one-to-one. However, a method called Gray 
coding is usually used in signal assignment in MPSK. Gray coding assigns n-tuples 
with only one-bit difference to two adjacent signals in the constellation. When an 
M-ary symbol error occurs, it is more likely that the signal is detected as the adjacent 
signal on the constellation, thus only one of the n input bits is in error. Figure 4.9 is 
the constellation of 8-PSK, where Gray coding is used for bit assignment. Note that 
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Figure 4.9 8-PSK constellation with Gray coded bit assignment. 

BPSK and QPSK are special cases of MPSK with hi = 2 and 4, respectively. On 
the entire time axis, we can write MPSK signal as 

s ( t )  = sl ( t )  cos 27r fct - s 2 ( t )  sin 27r fct, -cc < t < oo (4.1 5 )  

where 

where Bk is one of the N phases determined by the input binary n-tuple, p ( t )  is the 
rectangular pulse with unit amplitude defined on [0, TI. Expression (4.15) implies 
that the carrier frequency is an integer multiple ofthe symbol timing so that the initial 
phase of the signal in any symbol period is Bk. 

Since MPSK signals are two-dimensional, for 111 2 4, the modulator can be 
implemented by a quadrature modulator. The MPSK modulator is shown in Figure 
4.1 0. The only difference for different values of A3 is the level generator. Each 
n-tuple of the input bits is used to control the level generator. It  provides the I- 
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n bits of 

Figure 4.1 0 MPSK modulator. 

and Q-channels the particular sign and level for a signal's horizontal and vertical 
coordinates, respectively. For QPSK, the level generator is particularly simple, it is 
simply a serial-to-parallel converter (see Section 4.6). 

Modem technology intends to use completely digital devices. In such an envi- 
ronment, MPSK signals are digitally synthesized and fed to a D/A converter whose 
output is the desired phase modulated signal. 

The coherent demodulation of MPSK could be implemented by one of the coher- 
ent detectors for M-ary signals as described in Appendix B. Since the MPSK signal 
set has only two basis functions, the simplest receiver is the one that uses two cor- 
relators (Figure B.8 with N = 2). Due to the special characteristic of the MPSK 
signal, the general demodulator of Figure B.8 can be further simplified. For MPSK 
the sufficient statistic is 

= J, ~ ( t )  [a cos ( t )  + & sin Oi&(t)]dt 

where 
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are independent Gaussian random variables with mean values sil and si2, respec- 
tively. Their variance is AT0/2. 

Let 

h 

7-2 = p sin 6 

then 

h h 

In the absence of noise, 0 = tan-' rz/rl = tan-' si2/sil = Qi . With noise, t9 will 
deviate from Qi. Since p is independent of any signal, then choosing the largest li is 

h 

equivalent to choosing the smallest (Bi - 01. This rule is in fact to choose signal si ( t )  
when r = [:;I falls inside the pie-shape decision region ofthe signal (see Figure 4.9). 
Figure 4.11 is the demodulator based on the above decision ru!e where subscript k 
indicates the kth symbol period and CR stands for carrier recovery. Note that the 
amplitude of the reference signals can be any value, which is dm in the figure, 
since the effect of the amplitude is cancelled when computing &. 

The symbol error probability can be derived as follows. Given si(t) is trans- 
mitted (or hypothesis H ,  is true), the received vector r = [::] is a point in the 

(t) - & ( t )  plane. Its joint probability density fbnction is two-dimensional. 

Geometrically, the PDF is a bell-shape surface centered at si = [:'!I (Figure 4.12). 
An error occurs when r falls outside the decision region ~ i ' l s e e  Figure 4.9). 

Thus 
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Figure 4.11 Coherent MPSK demodulator using two correlators. 

Figure 4.12 Joint PDF of r given s, ( t )  is transmitted. 
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Using (4.19) and (4.20) we can transform the above into polar  coordinate^.^ 

where 

h 

is the joint probability density of p and 8. W define yl = 8 - B i ,  which represents 
the phase deviation of the received signal from the transmitted one. Integrating both 
sides of the above with respect to p yields the PDF of y E [-K, K] (see Appendix 
4A for derivation). 

where 

is the errorfunction. Note the distribution of rp is independent of index i. This is 
intuitively correct since cp  is the phase deviation, not the absolute phase. 

The symbol error probability is the probability that 
region, or the deviation p is greater than a/M in absolute 

7r/M 

p s = l -  J P W ~ V  
- ~ / h l  

h 

8 is outside the decision 
value. 

When hf = 2 (BPSK) and M = 4 (QPSK) this integration results in the formulas 
given by (4.6) and (4.37). For A1 > 4, this expression cannot be evaluated in a closed 
form, the symbol error probability can be obtained by numerically integrating (4.2 1 ) .  

Note that dr ldrz  = pd&. 
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Another form of P, is given in [2, p. 2091. The derivation is very complicated and is 
omitted here. The result is 

M - 1  1 
P, = -- 

Ad - 2 err [ J$ sin $1 
This again can only be numerically evaluated for M > 4. 

Figure 4.13 shows P, curves for M = 2,4,8,16,  and 32 given by the exact 
expression (4.22). Beyond M = 4, doubling the number of phases, or increasing 
one bit in the n-tuples represented by the phases, requires a substantial increase in 
SNR. For example, at Ps = the SNR difference between M = 4 and A1 = 8 is 
approximately 4 dB, the difference between M = 8 and M = 16 is approximately 5 
dB. For large values of M, doubling the number of phases requires an SNR increase 
of 6 dB to maintain the same performance. 

For EIN, >> 1, we can derive an approximation of the Ps expression. First we 
can use the approximation5 

to obtain the approximation of the PDF of the phase deviation 

Finally substituting (4.23) into (4.2 1 )  we arrive at the result 

= 2 4  (/g sin $) , (coherent MPSK) 

where 

erf c ( x )  = 1 - erf(r)  = 2~(fiz) 

- z2 
In fact 1 - is a lower bound of erf(z), however they are extremely close for r >> 1 
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Figure 4.13 P, of MPSK (solid lines) and DMPSK (dotted lines). 
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is the complementary error function. Note that only high signal-to-noise ratio as- 
sumption is needed for the approximation. Therefore (4.24) is good for any values 
of 11.3, even though it is not needed for M = 2 and 4 since precise formulas are 
available. 

Expression (4.24) can be derived geometrically. Consider Figure 4.14. Due to 
symmetry of the signal constellation, P, is equal to the error probability of detect- 
ing s ~ ,  which is the probability that the received signal vector r does not fall in the 
decision region Z1. This is bounded below and above as follows 

where the equal sign on the left part of the inequality accounts for the case of hf = 2. 
The distance from sl to the nearest signal is 

Since white Gaussian noise is identically distributed along any set of orthogonal axes 
[3, Chapter 31, we may temporarily choose the first axis in such a set as one that passes 
through the points sl and sz, then for high SNR 

Thus 

Q (Jg sin $) 5 pS 5 2Q (Jg sin $) 

Since the lower and upper bounds differ only by a factor of two, which translates into 
a very small difference in term of SNR, these bounds are very tight. 

The bit error rate can be related to the symbol error rate by 

for Gray coded MPSK signals since most likely the erroneous symbols are the adja- 
cent signals which only differ by one bit. 
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Figure 4.14 Decision regions for bounding P, of MPSK signals 

4.4 PSD OF MPSK 

The PSD of MPSK is similar to that of BPSK except that the spectral is narrower on 
a frequency scale normalized to the bit rate. As for all carrier modulated signals, it 
suffices to find the PSD of the complex envelope (Appendix A). 

Substituting (4.16) and (4.17) into (4.15), we can write the MPSK signal as 

Thus the complex envelope of MPSK is 
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where 

is a random variable which has M / 2  different values with equal probabilities (&). 
X Refer to the example of 8-PSK in Figure 4.9. We can see that cos& = cos or 

3 x  5 x  cos T or cos 7 or cos?, which is cos Qk = 0.924 or 0.383 or -0.383 or -0.924. 
These values are symmetrical about zero. Thus the mean value is zero. The mean 
square value is 

Note that the mean square value is always $ for A f  = Zn, n > 1. The distribution 
of sinek is the same. 

Thus the complex envelope can be written as 

where {xk = C O S ~ ~ )  and {yk = sinek} are independent, identically distributed 
random sequences with zero means and a mean square value of 1/2. The PSD of 
this type of complex envelope has been derived in Appendix A. The result (A.21) 
can be directly used here. 

Since 02, = o: = o2 = 112 and 

then from (A.21) we have 

sin n f nTb 2 

= A ~ ~ T ~  ( ) , (MPSK) af nTb 

where n = log2 M. This is exactly the same as that of BPSK in terms of symbol 
rate. However, in terms of bit rate the PSD of MPSK is n-times narrower than the 
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BPSK. Figure 4.15 is the PSDs (A = fi and Tb = 1 for unit bit energy: Eb = 1) for 
different values of h.l where the frequency axis is normalized to the bit rate (f Tb). 

Since the passband minimum (Nyquist) bandwidth required to transmit the sym- 
bols is 1/T, the maximum bandwidth efficiency is 

Rb (1092 W I T  -- - 
1/T 

= log, M 
Bmin  

4.5 DIFFERENTIAL MPSK 

in Section 4.2 we discussed DBPSK, which is in fact a special case of differential 
MPSK (DMPSK). The term DMPSK refers to 'differentially encoded and differen- 
tially coherently demodulated MPSK." The differentially coherent demodulation is 
in fact noncoherent in the sense that phase coherent reference signals are not required. 
It is used to overcome the adversary effect of the random phase in the received signal. 

Differentially encoded MPSK can also be coherently demodulated (denoted as 
DEMPSK). In this case, the purpose of differential encoding is to eliminate phase 
ambiguity in the carrier recovery process. This is not usually meant by the term 
DMPSK. 

In both cases, the modulation processes are the same. In other words, the trans- 
mitted MPSK signals are the same. Only demodulations are different. 

In the modulator the information bits are first differentially encoded. Then the 
encoded bits are used to modulate the carrier. In a DEMPSK signal stream, informa- 
tion is carried by the phase difference AOi between two consecutive symbols. There 
are ill different values of At?, , each represents an n-tuple (n = log, J3) of informa- 
tion bits. 

For M = 2 and 4, encoding, modulation, and demodulation are simple, as we 
have seen in Section 4.2 for DBPSK and will see shortly for differentially encoded 
QPSK. 

In light of the modem digital technology, DEMPSK signals can be generated by 
digital frequency synthesis technique. A phase change from one symbol to the next 
is simply controlled by the n-tuple which is represented by the phase change. This 
technique is particularly suitable for large values of M. 

In DMPSK scheme, the DEMPSK signal is demodulated by a differentially co- 
herent (or optimum noncoherent) demodulator as shown in Figure 4.16. 

The derivation ofthe demodulator is similar to that of binary DPSK. In DEMPSK 
a message mi of n = log, 1 1 1  bits is represented by the phase difference of two con- 
secutive symbols. In other words, mi is represented by a symbol with two symbol 
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Figure 4.1 5 PSDs of MPSK: (a) linear, (b) logarithmic, ( c )  out-of-band power. 
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periods defined as 

2 1  I T  whereA Bi = -$&, i = 1.2.  . . . M. The received signal r ( t )  has an unknown 
phase 0 introduced by the channel and is corrupted by AWGN. Consider the first two 
symbol durations [O 5 t 5 2T], from (B.59, the sufficient statistic for detecting 
(At )  is 

the first integral is 

= iT r ( t ) A  [cos 27r fct cos cPo - sin 2 n  fct sin Qo] dt 

R r ( t ) A  [COS 2zfct cos(iPo + Asi )  - sin 2~ fct sin(Qo + Aei)] dt 

= wo cos Qo + zo sin iPo + "1 C O S ( @ ~  + AOi) + ZI sin(@* + Asi) 

where 
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and the second integral is 

2T Jo mFi( t7  ;)dt 

= lT r.(t)A sin(2* fi:t + a n ) &  + LT i-(t)4 rin(2ifit + Qn + A8;)dt  

= -20 cos Qo + wo sin Qo - zl cos(Qo + A&) + url sin(Qo + A&) 

Then substituting these two integrals into (4.27), expanding the squares, discarding 
squared terms since they are independent of transmitted signals, dropping a factor of 
two, we have the following new sufficient statistic 

Li = (wl w0 + z1 zO) cos A& + (21 wo - U ~ I  20) sin ABi 

For the kth symbol duration this is 

Li = ( ~ ~ w k - 1  + z ~ z ~ - ~ ) c o s ~ ~ +  (fkwk-] - U J ~ Z ~ - ~ ) S ~ B ~  
P _J 

X k  Y k  

= xk cos AOi + yk sin A& (4.2 8) 

The decision rule is to choose the largest. Or we can write (4.28) as 

Li = A cos ~8~ cos A& + A sin agk sin ABi 

= Acos(A& -A&) 

where 
h 

Aek = tan- 1 % 

Thus the decision rule is to choose the smallest I AQi - A& I. Figure 4.16 implements 
this rule. As we stated in the binary DPSK case, the local oscillator output must have 
the same frequency, but not necessarily the same phase, as the received signal. The 
amplitude of the reference signals can be any value, which is unit in the figure, since 
the effect of the amplitude is cancelled when computing A&. 

The symbol error probability is given by [2] 

sin+ l:,: exp{-*[l - COSG C O S X ] }  
P, = dx 

27r 1 - cos 5 cosx 

which can be evaluated in a closed form for M = 2 (see (4.10)). For other values of 
Al, it can only be numerically evaluated. Many approximate expressions have been 
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Choose 

smallest 

Figure 4.16 Differentially coherent demodulator for differentially encoded MPSK signals. 

found [2,4], a simple one is 

P' = 2Q (g sin L) , (optimum DMPSK) 
JZkf 

(4.30) 

for large SNR. The exact curves as obtained from (4.29) are given in Figure 4.13 
together with those of coherent MPSK. Compared with coherent MPSK, asymptot- 
ically the DMPSK requires 3 dB more SNR to achieve the same error performance. 
This also can be quite easily seen by comparing the arguments of the Q-function in 
(4.30) and (4.24), using sin(x) FZ x for small x. 

For the purpose of phase ambiguity elimination, the DEMPSK signal is coher- 
ently demodulated. The optimum demodulator is shown in Figure 4.17 which is 
similar to Figure 4.1 1,  the demodulator for coherent MPSK, except that a differen- 
tial decoder is attached as a final stage. This is intuitively convincing since at carrier 
frequency the DEMPSK signal is the same as MPSK signal, thus the correlator pan 
is the same as that of coherent MPSK. The additional differential decoder recovers 
the differential phase ABi from phases of two consecutive symbols. The A& then 
is mapped back to the corresponding n-tuple of bits. Rigorous derivation of this 
optimum demodulator and its equivalent forms can be found in [2.4]. 

The symbol error probability of coherently demodulated DEMPSK is given by 
[2+ 41 
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Figure 4.17 Coherent demodulation o f  differentially encoded MPSK signals. 

where P,- J J P S K  is the symbol enor probability for MPSK without differential en- 
coding and is given by (4.2 I ) ,  and 

For Af = 2, we have coherent detection of differentially encoded BPSK for 
which (4.31) reduces to (4.12). For M = 4, it reduces to 

For large SNR, the second, third, and fourth terms can be ignored. Thus the above 
is just about two times that of coherent QPSK without differential encoding. In fact 
for any value of M when the SNR is large, the terms in the bracket of (4.3 1) is close 
to one, thus the P, of the coherently demodulated DEMPSK is about two times that 
of coherent MPSK without differential encoding. This translates to 0.5 dB or less 
degradation in SNR. This is the price paid for removing the phase ambiguity. 

A DEMPSK signal's PSD would be the same as its nonencoded counterpart if 
the encoding process does not change the statistic characteristic of the baseband data, 
since the final signal from the modulator is just MPSK signal. We always assume 
that the original data have an equally likely distribution. This results in that the 
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distribution of AOi is equally likely too. In turn the absolute phases of the DEMPSK 
signals are also equally likely. This satisfies the condition for deriving (4.26). Thus 
the PSD of DEMPSK is the same as that of MPSK given in (4.26) for an equally 
likely original data sequence. 

As we have proved in Chapter 2 and mentioned in Section 4.2, that differential 
encoding in DEBPSK always produces an equally likely data sequence asymptoti- 
cally regardless of the distribution of the original data. This leads to a PSD given by 
(4.8) for DEBPSK even if the original data is not evenly distributed. 

4.6 QUADRATURE PSK 

Among all MPSK schemes, QPSK is the most often used scheme since it does not 
suffer from BER degradation while the bandwidth efficiency is increased. Other 
MPSK schemes increase bandwidth efficiency at the expenses of BER performance. 
In this section we will study QPSK in great detail. 

Since QPSK is a special case of MPSK, its signals are defined as 

where 

The initial signal phases are ;, y ,  F, T. The carrier frequency is chosen as integer 
multiple of the symbol rate, therefore in any symbol interval [kT:  ( k + l ) T ] ,  the signal 
initial phase is also one of the four phases. 

The above expression can be written as 

where qil ( t )  and &(t)  are defined in (4.2) and (4.3), 

sil = cos Oi 

and 
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I Dibit Phase Bi Si l  = m m  

Table 4.2 QPSK signal coordinates. 

where E = A2T/2 is the symbol energy. We observe that this signal is a linear 
combination of two orthonormal basis functions: 4, (t) and Q, (t). On a coordinate 
system of 4, ( t )  and &(t)  we can represent these four signals by four points or vec- 
tors: si = [:::], i = 1,2,3,4.  The angle of vector si with respect to the horizontal 
axis is the signal initial phase Bi. The length of the vectors is 0. 

The signal constellation is shown in Figure 4.18. In a QPSK system, data bits 
are divided into groups of two bits, called dibits. There are four possible dibits, 00, 
0 1, 10, and 11. Each of the four QPSK signals is used to represent one of them. The 
mapping of the dibits to the signals could be arbitrary as long as the mapping is one to 
one. The signal constellation in Figure 4.18 uses the Gray coding. The coordinates 
of signal points are tabulated in Table 4.2. 

In the table, for convenience of modulator structure, we map logic 1 to dv 
and logic 0 to -m. We also map odd-numbered bits to sil and even-numbered 
bits to siz. Thus from (4.34) the QPSK signal on the entire time axis can be written 

A A 
sin 2n f,t, -00 < t < 00 (4.35) 

where I ( t )  and Q ( t )  are pulse trains determined by the odd-numbered bits and even- 
numbered bits, respectively. 

where Ik = f 1 and Qk = *I, the mapping between logic data and Ik or Qk is 
1 -+ 1 and 0 --+ -1. p(t) is a rectangular pulse shaping function defined on [O, TI. 

The QPSK waveform using the signal assignment in Figure 4.1 8 is shown in 
Figure 4.19. Like BPSK, the waveform has a constant envelope and discontinuous 
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Figure 4.18 QPSK signal constellation. 

phases at symbol boundaries. But unlike BPSK, the symbol interval is 2Tb instead 
of Tb. If the transmission rate of the symbols is the same in QPSK and BPSK, it is 
intuitively clear that QPSK transmits data twice as fast as BPSK does. Also we ob- 
serve that the distance of adjacent points of the QPSK constellation is shorter than 
that of the BPSK. Does this cause the demodulator more difficulty, in comparison 
with BPSK, to distinguish those symbols, therefore symbol error performance is de- 
graded and consequently bit error rate is also degraded ? Surprisingly, it turns out that 
even though symbol error probability is increased, the bit error probability remains 
unchanged, as we will see shortly. 

The modulator of QPSK is based on (4.35). This leads to the modulator in Figure 
4.20(a). The channel with cosine reference is called inphase (I) channel and the 
channel with sine reference is called quadrature (Q) channel. The data sequence 
is separated by the serial-to-parallel converter (S/P) to form the odd-numbered-bit 
sequence for I-channel and the even-numbered-bit sequence for Q-channel. Then 
logic 1 is converted to a positive pulse and logic 0 is converted to a negative pulse, 
both have the same amplitude and a duration of T. Next the odd-numbered-bit pulse 
train is multiplied to cos 27r f,t and the even-numbered-bit pulse train is multiplied to 
sin 2x j,t. It is clear that the 1-channel and Q-channel signals are BPSK signals with 
a symbol duration of 2Tb. Finally a summer adds these two waveforms together to 
produce the final QPSK signal. (see Figure 4.19 for waveforms at various stages.) 

Since QPSK is a special case of MPSK, the demodulator for MPSK (Figure 
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Figure 4.19 QPSK waveforms. 
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polar NRZ, I(t) 

Output 
binary data 

Figure 3.20 (a) QPSK modulator, (b) QPSK demodulator. 
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4.11) is applicable to QPSK. However, due to the special property of the QPSK con- 
stellation, a simpler demodulator is possible. It is shown in Figure 4.20(b) which is 
equivalent to Figure 4.11. I- and Q-channel signals are demodulated separately as 
two individual BPSK signals. A parallel-to-serial converter (PIS) is used to combine 
two sequences into a single sequence. This is possible because of the one-to-one cor- 
respondence between data bits and I- and Q-channel signals and their orthogonality. 
For M > 4, the optimum receiver can only be the form in Figure 4.11, since the sig- 
nal in the I-channel or Q-channel does not correspond to a single bit, as we have seen 
in Section 4.3. 

The bit error probability of the optimum demodulators can be derived using the 
demodulator of Figure 4.20. Since E { r j ) ,  j = 1,2 ,  is either or - dm, 
corresponding to a bit of 1 or 0 (Table 4.2), the detection is a typical binary detection 
with a threshold of 0. The average bit error probability for each channel is 

Pb = Pr(e/ l  is sent) = Pr(e/O is sent) 

The final output of the demodulator is just the multiplexed I- and Q-channel outputs. 
Thus the bit error rate for the final output is the same as that of each channel. A 
symbol represents two bits from the I- and Q-channels, respectively. A symbol error 
occurs if any one of them is in error. Therefore the symbol error probability is 

The above symbol error probability expression can also be derived from the gen- 
eral formula in Section 4.3 for MPSK(4.2 1). Then the bit error probability expression 
can be derived in another way as follows. First for large SNR, the second term in 
(4.37) can be ignored. Second, for Gray coding and large SNR, a symbol error most 
likely causes the symbol being detected as the adjacent symbol which is only one bit 
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different out of two bits. Thus 

This expression is derived by approximations. But it is the same as the one obtained 
by the accurate derivation. We have made approximations twice. The first is to ignore 
the second term in (4.37). This increases the estimate of Pb slightly. The second is 
to ignore the symbol errors caused by choosing the nonadjacent symbols which may 
cause two bit errors for a symbol error. This decreases the estimate of Pb slightly. 
The fact that the final estimate is exactly equal to the accurate one shows that these 
two approximations happen to cancel each other. It is purely a coincidence. 

The Pb curve of QPSK is shown in Figure 4.21, which is the same as that of 
BPSK. The P, curve of QPSK is shown in Figure 4.13 together with other MPSK 
schemes. 

The PSD of QPSK is similar to that of BPSK except that the spectral is narrower 
on a frequency scale normalized to the bit rate. From (4.26) we have 

sin 27r f Tb 

Figure 4.22(a, b) are the PSD curves of the QPSK. The null-to-null bandwidth 
BnUll = l/Tb = Rb . Figure 4.22(c) is the out-of-band power curve fiom which we 
can estimate that Bgo% = 0.75Rb . We also calculated that Bg9% = 8Rb. 

4.7 DIFFERENTIAL QPSK 

Now we study an important special case of DEMPSK, the DEQPSK. In DEQPSK 
information dibits are represented by the phase differences AOi fiom symbol to sym- 
bol. There are different phase assignments between ABi and logic dibits. A possible 
phase assignment is listed in Table 4.3. Our discussion in this section is based on this 
phase assignment choice (later when we study n/4-QPSK, the phase assignment is 
different). An example for this choice is shown in Table 4.4. 

The coding rules are as follows (41. 

where ii', denotes exclusive OR operation. Ik E (0 , l )  and Qk E (0, I) are odd- 
numbered and even-numbered original information bits, respectively; u k  E ( O , 1 )  
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Figure 4.2 1 Pb of QPSK and DQPSK. 

and v k  E ( O , 1 )  are coded 1-channel and Q-channel bits, respectively. Pairs (.Ik, Qk) 
and ( z L ~ - ~ ,  v ~ - ~ )  are used to produce pair (uk, vk) which is used to control the ab- 
solute phase of the carrier. The resultant signal is a QPSK signal as shown in Figure 
4.18 for (uk ,  vk), but it is a DEQPSK signal for (Ikr Qk). Therefore the modulator 
is basically the same as the QPSK modulator (Figure 4.20) except that two differ- 
ential encoders must be included in each channel before the carrier multiplier. The 
modulator is shown in Figure 4.23. 

When DEQPSK is differentially coherently demodulated, the scheme is DQPSK. 
The optimum DQPSK demodulator can be derived from Figure 4. I6 as a special case 
of M = 4. The symbol error probability is given by (4.29) or (4.30). The bit error 
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Figure 4.22 PSD of  QPSK in comparison with BPSK: (a) linear, (b) logarithmic, ( c )  out-of-band power. 
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Dibit cos sin Loi 
00 0 1 0 
01 n/2 0 1 
10 - x / 2  0 -1 
11 7r -1 0 

Table 4.3 DEQPSK signal phase assignment. 

Modulation ref. 
information sequence Ik 1 0  1 0  I 1 0 I 

Q k  0 1 0 I 1 0 0 1 
Encoded sequence ur, 1 1 1 1  0 0 0  1 

V k  1 0 1 0 I 0 1 I 0 
77r n 7n x 57r 3 x  3x 7 x  Transrnittedabsolutephases 4 T 7 7 a 

Table 4.4 Differential coding for DEQPSK. 

Binary source 1 
Di fterential 

encoder 

Polar NRZ 

DEQPSK 
1 Signal 

Figure 4.23 DEQPSK modulator. 
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probability can be approximately calculated using (4 .E). Thus 

which is plotted in Figure 4.21. It is about 2 to 3 dB inferior to coherent QPSK. 
Alternately, bit error probability of DQPSK can be evaluated using an expression 
given by (51 as 

where y, = Eb /No and 1, (x) is the ath order modified Bessel function of the first 
kind which may be represented by the infinite series 

and the gamma function is defined as 

Like in binary DPSK case, a suboptimum demodulator using previous symbols 
as references is shown in Figure 4.24 where the integrator can be replaced by a low- 
pass filter 161 The front-end bandpass filter reduces noise power but preserves the 
phase of the signal. In the absence of noise, the I-channel integrator output is 

1 2  Simi Iarly the Q-channel integrator output is 5 A T sin ABk . The arctangent opera- 
tion extracts the agk (estimate of ABk with the presence of noise) and a comparator 
compares it to the four AOi and chooses the closest. The dibit is then recovered from 
the detected ABi. For special dibits-AOi assignment, such as the one for a/4-QPSK, 
as w i l l  be seen in the next sect ion, the angle detector can be replaced by two threshold 
detectors (see Figure 4.3 1). The bit error probability of the suboptimum demodulator 
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Figure 4.24 Suboptimum DQPSK demodulator (see Figure 4.16 for optimum demodulator). 

in Figure 4.24 is given by [7, p.2601 

where A2/202 is the carrier-to-noise power ratio. In order to compare this to other 
error probabilities, we need to relate A2/202 to Eb/hT0. In the derivation of this ex- 
pression [7], the narrow-band noise has a variance of rr2 for the inphase and quadra- 
ture component at the output of the front-end bandpass filter. The total noise variance 
is also equal to c2 [8, p.761. The baseband signal is bandlimited to B. The bandwidth 
of the bandpass filter is just the same. Thus there is no intersymbol interference and 
the signal amplitude at sampling instances is A. So far in this chapter, the baseband 
pulse shape is always assumed as rectangular. For this pulse shape, the intersym- 
bol interference free filter is the Nyquist filter which has a bandwidth of B = 1/T 
at carrier frequency. Thus the noise power o2 
Es = 4 A ~ T .  Thus 

= NJT.  The signal symbol energy 

This is also stated in [2, p.444, eqn.(7.6)]. Thus (4.42) can be written as 

-%(1-1/&) = e - 0 . 5 9 a  f i z e  N { )  (Suboptimum DQPSK) (4.43) 

This is plotted in Figure 4.2 1. Seen from the figure, the degradation to the optimum 
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Figure 4.25 Coherent demodulation of DEQPSK. 

DQPSK is less than 1 dB for high SNRs (>I2 dB). But at the lower SNRs, the 
degradation is much larger. This is intuitively convincing since the reference signal 
is the previous signal which has noise. Compared to the suboptimum DBPSK, the 
degradation is about 1.75 dB for all SNRs. 

For the purpose of phase ambiguity elimination, the DEQPSK signals are co- 
herently demodulated. The demodulator is thus basically the same as QPSK demod- 
ulator except that a differential decoder must be inserted after demodulation. The 
demodulator can be in the form of Figure 4.17 where differential decoding is car- 
ried out on signal phases. However, since there are only two levels in the 1- and Q- 
channels, the demodulator can be in a simpler form as shown in Figure 4.25, where 
the differential decoding is carried out on digital signal levels. The decoding rules 
are 

Table 4.5 shows the decoding process assuming a phase ambiguity of 7~12. 
Note that the coherent demodulator for DEQPSK in Figure 4.25 is not suitable 

for r/4-QPSK since its dibits-AOi assignment is different (see the x/4-QPSK sec- 
t ion). 

The symbol error probability has been given in (4.32). For Gray coded constel- 
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Transmitted absolute phases - n 'I * T L  = Z I . 5 3 3 L  lr 7r X 7r 
4 4 4 4 4 4 4 4 4 

Demodulation 
Estimated absolute phases 3nn3n37r3x7n5naz - - 

4 4 4 4 4 4 3 4 4 
Detected digits Gk 0 1 0 1 0 1 0 0 1 

h 

Vk 1 
h 

1 1 1 1 0 0 0 1  

Detected information digits Ik 1 0  t 0 1 1 0 1 

ole 0 1 0  1 1 0 0 1 

Table 4.5 Differential decoding for DEQPSK. 

lation and at high SNR, this translates to a bit error probability of 

Pb 2Q (/%) , (DEQPSK) 
No 

which is plotted in Figure 4.21. It is seen from the figure that DQPSK is less than 
0.5 dB inferior to coherent QPSK. 

4.8 OFFSET QPSK 

Offset QPSK is essentially the same as QPSK except that the I- and Q-channel pulse 
trains are staggered. The modulator and the demodulator of OQPSK are shown in 
Figure 4.26, which differs fiom the QPSK only by an extra delay of 272 seconds in 
the Q-channel. Based on the modulator, the OQPSK signal can be written as 

Since OQPSK differs fiom QPSK only by a delay in the Q-channel signal, its power 
spectral density is the same as that of QPSK, and its error performance is also the 
same as that of QPSK. 

The OQPSK waveforms are shown in Figure 4.27. We observe that due to the 
staggering of I- and Q-channels, the OQPSK signal has a symbol period of T/2.  At 
any symbol boundary, only one of the two bits in the pair (Ik. Qk) can change sign. 
Thus the phase changes at symbol boundaries can only be O0 and f 90'. Whereas the 
QPSK signal has a symbol period of T, both two bits in the pair (Ik, Qk) can change 
sign, and the phase changes at the symbol boundaries can be 180' in addition to 
0" and f 90" (see Figure 4.19). 

In comparison to QPSK, OQPSK signals are less susceptible to spectral side- 
lobe restoration in satellite transmitters. In satellite transmitters, modulated signals 
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Figure 4.26 OQPSK modulator and demodulator. 
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Figure 4.27 OQPSK waveforms. 
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Figure 4.28 n/4-QPSK modulator. 

must be bandlimited by a bandpass filter in order to conform to out-of-band ernis- 
sion standards. The filtering degrades the constant-envelope property of QPSK, and 
the 180" phase shifts will cause the envelope to go to zero momentarily. When this 
signal is amplified by the final stage, usually a highly nonlinear power amplifier, 
the constant envelope will be restored. But at the same time the sidelobes will be 
restored. Note that arranging the bandpass filter after the power amplifier is not fea- 
sible since the bandwidth is very narrow compared with the carrier frequency, the 
Q-value of the filter must be extremely high such that it cannot be implemented by 
the current technology. In OQPSK, since the 180•‹ phase shifts no longer exist, the 
sidelobe restoration is less severe [9]. 

Although OQPSK can reduce spectral restoration caused by nonlinearity in the power 
amplifier, it cannot be differentially encoded and decoded. ~ / 4 - Q P S K  is a scheme 
which not only has no 180" phase shifts like OQPSK, but also can be differentially 
demodulated. These properties make it particularly suitable to mobile communica- 
tions where differential demodulation can reduce the adversary effect of the fading 
channel. n/4- QPSK has been adopted as the standard for the digital cellular tele- 
phone system in the United States and Japan. 

x/4-QPSK is first introduced by Baker in 1962 [lo] and studied in [ r  I .  I Z ]  and 
other articles. 

The a/4-QPSK is a form of differentially encoded QPSK. But it differs from the 
DEQPSK described in the previous section by the differential coding rules. Figure 
4.28 is the ~ / 4 - Q P S K  modulator. (I (t), Q ( t ) )  and ( u ( t ) ,  ~ ( t ) )  are the uncoded and 
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coded I-channel and Q-channel bits. The differential encoder of ~/4-QPSK mod- 
ulator encodes I ( t )  and Q(t)  into signals u( t )  and v ( t )  according to the following 
rules 

where uk is the amplitude of u( t )  in the kth symbol duration and so on. We assume 
that ik , Qk takes values of (- 1,l). If we initially specify that uo = 1 and vo = 
0, then u k  and vk can take the amplitudes o f f  1 ,O:  and f l/&. The output signal 
of the modulator is 

s ( t )  = uk cos 27r f,t + v k  sin 2nht 

= A c o s ( ~ T ~ , ~ + @ ~ ) ,  k T < t < ( k +  1)T 

where 

which depends on the encoded data, and 

is independent of time index k, that is, the signal has a constant envelope. This 
can be easily verified by substituting (4.46) into the expression of A, it turns out 
Ak = Ak-1. In fact A = 1 for initial values uo = 1 and uo = 0. It can be proved 
that the phase relationship between two consecutive symbols is 

where is the phase difference determined by input data. 
Proof: By definition 
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Table 4.6 r14-QPSK signal phase assignment. 

Now let 

then 

and we have 

sin ABk cos ak- + cos nok sin ak- 1 
tanQk = 

cos Aek cos ak- 1 - sin sin cPk- 1 

thus we have proved (4.47). Using (4.48) we can write (4.46) as 

Table 4.6 shows how is determined by the input data. 
Referring to the values of in Table 4.6, we can see clearly from (4.47) that 

the phase changes are confined to odd-number multiples of 7r/4 (45'). There are 
no phase changes of 90" or 180". In addition, information is carried by the phase 
changes A&, not the absolute phase Qk. The signal constellation is shown in Figure 
4.29. The angle of a vector (or symbol) with respect to the positive direction of axis 
u is the symbol phase Gk. The symbols represented by can only become symbols 
represented by x, and vice versa. Transitions among themselves are not possible. 
The phase change from one symbol to the other is A&. 

Since information is carried by the phase changes A&, differentially coher- 
ent demodulation can be used. However, coherent demodulation is desirable when 
higher power efficiency is required. There are four ways to demodulate a n/4-QPSK 
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Figure 4.29 x/4-QPSK signal constellation. 

1. Baseband differential detection, 
2. IF band differentia1 detection, 
3. FM-discriminator detection, 
4. Coherent detection. 

The first three demodulators are reported to be equivalent in error performance 
[HI. The coherent demodulator is 2 to 3 dB better. 

Figure 4.30 is the baseband differential demodulator which is just a special case 
of the DMPSK demodulator in Figure 4.16. The LPF in Figure 4.30 is equivalent to 
the integrator in Figure 4.16. The angle calculation and comparison stages in Figure 
4.16 are equivalently replaced by two threshold detectors. The bandpass filter (BPF) 
at the front end is used to minimize the noise power. However, carrier phase must be 
preserved for the proper differential detection. A square-root raised-cosine roll-off 
BPF can achieve this goal [12]. The local oscillation has the same frequency as the 

AS a matter of fact. these methods are also applicable to other differential MPSK schemes. 
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Figure 4.30 Baseband differential demodulator for n/4-QPSK. 
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Figure 4.3 1 IF band differential demodulator for r/4-QPSK. 
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Figure 4.32 FM-discriminator demodulator for n/4-QPSK. 
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unrnodulated carrier but its phase is not synchronous with the received signal. It is 
assumed that the difference phase 6 in the received signal remains essentially the 
same from the previous symbol duration to the current symbol duration. This phase 
difference will be cancelled in the baseband differential decoder. 

In the absence of noise, the output of the BPF in the kth symbol duration is 

where B is the random phase introduced by the channel. We assume that 0 changes 
very slowly in comparison to the symbol rate so that it is considered constant in two 
consecutive symbols. The time-varying amplitude Ak has replaced the constant am- 
plitude in the transmitted signal. The variation in amplitude might be due to channel 
fading or interference. In the kth symbol duration the I-channel multiplier output is 

The low-pass filter (LPF) output for the I-channel is therefore (ignoring the factor 
112 and the LPF loss) 

Similarly the Q-channel LPF output is 

Since 19 has not been changed from the previous symbol duration, then 

The decoding rule is 

which is 
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From Table 4.6, the decision devices decide7 

The symbol error probability is given in (4.29) or (4.30), and Pb is given in (4.40). 
The IF band differential demodulator (Figure 4.3 1) cancels the phase difference 

6 in the IF band. The I-channel multiplier output is 

Again ignoring the factor A2/2 and the LPF loss, LPF output is cos(Qk - @k-l) = 
.rk. Similarly the Q-channel LPF output is found to be sin(ak -ak-- = yk. The rest 
is the same as the baseband differential detection. The advantage of this demodulator 
is that no local oscillator is needed. 

The discriminator demodulator is shown in Figure 4.32. The ideal bandpass 
hard limiter keeps the envelope of the received signal constant without changing its 
phase. The ideal frequency discriminator output is proportional to the instantaneous 
frequency deviation of the input signal. That is 

The integrate-sample-dump (ISD) circuit output is 

JkT v ( t ) d t  = Qk - 
(k- l )T  

= + 2n7r 
= A&, (mod 274 

where 2nn is caused by click noise 1131. The modulo-27r operation removes the 2n,x 
term and the output is A& which in turn will be mapped to a corresponding dibit. 

The error probabilities of the above three demodulators are reported to be equal 
11 1 1 . ~  Like the DQPSK in the last section, the symbol error probability for the above 
three equivalent demodulators is given by (4.29) or (4.30). The bit error probability 

In Figure 4.16, the decision rule is to choose the smallest lAOi - ~2~ 1. This rule is simplified for 
r/4-QPSK as described here. 

But it is not clear why the IF band differential demodulator could be equivalent to the baseband 
differential demodulator, because the latter is optimum and the former is not. according to our discussion 
in the section discussing DQPSK. The same doubt should arise regarding the discriminator demodulator. 



Chapter 4 Phase Shift Keying 177 

can be approximately calculated using (4.25). Alternately, bit error probability can 
be evaluated using (4.40). 

The coherent n/4-QPSK demodulator can be in the form of Figure 4.1 7 where 
differential decoding is performed on the signal phases. The coherent demodulator 
of DEQPSK in Figure 4.25 is not suitable for ~/4-QPSK since its dibits-AOi as- 
signment is different. A novel coherent x/4-QPSK demodulator (Figure 4.33) has 
been proposed in [ I  I 1 where differential decoding is performed on the baseband sig- 
nal levels. In x/4-QPSK, assuming Ak = 1 in (4.50), the demodulated signals are 
two-level (f I/&') at every other sampling instant. In between, the signals are three- 
level (O! f 1) .  This can be seen from the signal constellation (Figure 4.29), where @ 

signals are two-level and x signals are three-level, and a a signal must be followed 
by a x signal or vice versa. If three-level detection is employed, the performance de- 
grades compared with two-level detection. The three-level signals are converted to 
two-level signals in Figure 4.33. The converted two-level signals are detected by a 
two-level threshold detector. When the signals are two-level, the switches are in po- 
sition A, the detection is the same as in QPSK. When the signals are three-level, the 
switches are in position B, the signals are converted to two-level by the following 
simple operations 

It is easy to verify that the conversions are (ignoring noise) 

This is equivalent to rotate vector (xl k, ylk) by + ~ / 4  and amplify its amplitude by 
. In other words, it is to rotate a x vector to the next vector position with an 
amplitude gain of 4. This makes signal power doubled. However, the noise power 
is also doubled since the in-phase and quadrature channel noise are uncorrelated (see 
(4.5 1)). Thus the BER performance of the coherent x/4-QPSK is the same as that 
of the coherent QPSK. 

The detected signals iik and Gk are decoded by a DEQPSK differential decoder 
as in (4.44). Then the signals must be passed through a special PIS converter. The 
circuit is shown in Figure 4.34. The clock is derived from the symbol clock by 
dividing the frequency by two. The phase of this clock is synchronous to the switch 
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Figure 4.34 The parallel-to-serial converter of the n/4-QPSK coherent demodulator 
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Figure 4.33 n/4-QPSK coherent demodulator. 
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for selecting sampled signals. The SIP converter delivers inphase and quadrature 
data alternately to the output. Refer to i l l )  for details. 

As mentioned above in terms of error probability in the AWGN channel, the 
n/4-QPSK is the same as ordinary DEQPSK or DQPSK. That is, the coherently de- 
modulated r/4-QPSK has the same BER as that of DEQPSK and the noncoherently 
demodulated a/4-QPSK has the same BER as that of DQPSK (see Figure 4.21). 

4.1 0 SYNCHRONIZATION 

Coherent demodulation requires that the reference signal at the receiver be synchro- 
nized in phase and frequency with the received signal. Both coherent and noncoher- 
ent demodulations require symbol timing at the receiver to be synchronized in phase 
and frequency with the received signal. 

Carrier synchronization can be achieved by sending a pilot tone before message 
signals. Because the pilot tone has a strong spectral line at the carrier frequency, the 
receiver can easily lock on it and generates a local coherent carrier. However, this 
requires extra transmission bandwidth. 

Carrier synchronization also can be achieved with a carrier recovery circuit 
which extracts the phase and frequency information from the noisy received signal 
and use it to generate a clean sinusoidal reference signal. 

Symbol synchronization usually is achieved by a clock (symbol timing) recovery 
circuit which uses the received signal to control the local oscillator. 

4.1 0.1 Carrier Recovery 

The PSK signals have no spectral line at carrier frequency. Therefore a nonlinear 
device is needed in the carrier recovery circuit to generate such a line spectrum. 
There are two main types of carrier synchronizers, the Mth power loop, and the 
Costas loop. 

Figure 4.35 is the Mth power loop for carrier recovery for M-ary PSK. For 
BPSK (or DEBPSK), IM = 2, thus it is a squaring loop. For QPSK (or OQPSK, 
DEQPSK), M = 4, it is a quadrupling loop, and so on. It is the Mth power device 
that produces the spectral line at M f,. The phase lock loop consisting of the phase 
detector, the LPF, and the VCO, tracks and locks onto the frequency and phase of the 
M f, component. The divide-by-M device divides the frequency of this component 
to produce the desired carrier at frequency f, and with almost the same phase of the 
received signal. Before locking, there is a phase difference in the received signal 
relative to the VCO output signal. We denote the phase of the received signal as 0 
and the phase of the VCO output as MZ. 
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z(t) contains 

Figure 4.35 lllth power synchronizer for carrier recovery. 

rit) 

For BPSK, using (4 .9 ,  setting A = 1, and noticing that a2(t)  = 1,  we have 

' i 

z(t) 

~ ( t )  = [ s ( t )  + n(t)12 = a 2 ( t )  cos2(27r fct + 0) + noise terms 

sin(M0 - M e )  
BPF , (3" b LPF 

1 
= - (1 + C O S ( ~ T  f,t + 29)] + noise terms 

2 

which contains a spectral line at 2 f, that can be tracked by the phase lock loop (PLL). 
The VCO output is divided by two in frequency to provide the desired carrier. It is 
obvious that the loop will produce a carrier with the same phase when the phase 0 is 
either 0 or .IT.. Then the demodulator output could be +a(t)  or -a( t ) .  We say that the 
loop has a phase ambiguity of n. Differential coding can eliminate phase ambiguity, 
as we described in previous sections in this chapter. 

For QPSK, using (4.33, setting A = a, and noticing that ( t )  = Q2 ( t )  = 1 ,  
we have 
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= [l - I ( t )Q( t )  s i n ( 4 ~  fct + 28)12 + noise terms 
1 1  

= 1 - 2l( t )Q(t )  sin(4nfCt + 20) + - - - cos(8n f,t + 40) + noise terms 
2 2 

The last signal term contains a spectral line at 4 fc which is locked onto by the 
PLL. A divide-by-four device is used to derive the carrier frequency. Note that the 
I ( t )Q( t )  sin(4a f,t + 20) term resulted from squaring operation cannot produce a 
line spectrum since i ( t ) Q ( t )  has a zero mean value. Therefore fourth power opera- 
tion is needed for QPSK (and OQPSK). The last tern will have a 0 initial phase for 
6 = 0, or f x / 2 .  The demodulator output could be f l ( t )  or f Q ( t ) .  This is to say 
that there is a a / 2  phase ambiguity in the carrier recovery. It can be eliminated by 
differential coding as we discussed before. 

For general MPSK, where M = Zn, the Mth power operation will produce a 
spectral line at Mf, and the phase ambiguity is 2n/M 

The 
tracking 
small so 
[J41 

performance of the Mth power loop is generally measured by the phase 
error. Under the usual small angle approximation (i.e., the phase error is 

h 

that M? - M e  - sin(M0 - MB)), the variance of such error is given by 

where BL is the loop bandwidth defined in terms of the loop transfer function H (  f )  
as follows 

The parameter SL is the upper bound of squaring loss in the BPSK case and quadru- 
pling loss in the QPSK case. SL is a number without unit that reflects the increase 
in the variance of phase error due to squaring or quadrupling operation in the phase 
tracking loop. They are given by (141 

and 

9 6 3 
& = I + - + - + -  for A f  = 4 

Pi P: 2 ~ :  ' 

where pi is the input signal-to-noise ratio of the carrier recovery circuit. Observing 
(4.52), the unit of 02, is seemingly watt instead of radian2. This is due to the small- 
angle approximation in deriving the phase error variance where volt is replaced by 
radian. Therefore the unit of rri should be radian2. 
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r A 

Figure 4.36 Costas loop for carrier recover for BPSK. 

A 
I sin(21r$t+8) 

A difficulty in circuit implementation of the Aith power loop is the AIth power 
device, especially at high frequencies. Costas loop design avoids this device. 

Figure 4.36 is the Costas loop for carrier recovery for BPSK. Initially the VCO 
generates a sinusoid with a frequency close to the carrier frequency f, and some 
initial phase. The frequency difference and the initial phase are accounted for by 
the phase g. The multipliers in the 1- and Q-channels produce 2 f, terms and zero 
frequency terms. The LPFs attenuate the 2fc terms and their outputs are proportional 

h 

to a ( t )  cos(8 - 8 )  or a( t )  sin(@ - 8) .  Then these two terms multiply again to give the 
h 

term $ a 2 ( t )  sin 2(8 - 8) which is low-pass filtered one more time to get rid of any 
amplitude fluctuation in a 2 ( t ) ,  thus the control signal to the VCO is proportional to 
sin 2(2 - 8 ) .  which drives the VCO such that the difference 5 - 8  becomes smaller 
and smaller. For sufficiently small 8 - 8, the I-channel output is the demodulated 

a(?) cos(0 -8) 
e 

Todab 
* 

b 

LPF 

signal. 
The Costas loop for QPSK is shown in Figure 4.37. The figure is self-explanatory 

and its working principle is similar to that of BPSK. The limiters are bipolar, which 

LPF 

A 

a( t )  sin@ - 8 ) 

are used to control the amplitude of the two channels' signal to maintain balance. 
h 

When the phase difference qi = 0 - 0 is sufficiently small, the I- and Q-channel 

40 

outputs are the demodulated signals. 
A difficulty in Costas loop implementation is to maintain the balance between 

the I- and Q-channel. The two multipliers and low-pass filters in these two channels 
must be perfectly matched in order to achieve the theoretical performance. 

Although the appearance of the Mth power loop and the Costas loop are quite 

A A 
cos(2'?@+0) Ksin2(0-0) 

1 A 

dctcctor 

t 

-a2(t)  sin 2(0 -0 
c VCO ' LPF , 

" 

2 

, n -- 
2 

b 
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2 cos(2nLt +8)  t 

t 
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Figure 4.37 Costas loop for carrier recovery for QPSK. 

different, their performance can be shown to be the same [14]. Therefore (4.52) is 
also applicable to Costas loops. 

4.10.2 Clock Recovery 

The clock or symbol timing recovery can be classified into two basic groups. One 
group is the open loop synchronizer which uses nonlinear devices. These circuits 
recover the clock signal directly from the data stream by nonlinear operations on the 
received data stream. Another group is the closed-loop synchronizers which attempt 
to lock a local clock signal onto the received data stream by use of comparative 
measurements on the local and received signals. 

Two examples of the open-loop synchronizer are shown in Figure 4.38. The 
data stream that we use in the phase shift keying modulation is NRZ waveform. 
Recall in Chapter 2 we have shown that this waveform has no spectral energy at the 
clock Frequency (see Figure 2.3(a)). Thus in the open-loop synchronizers in Figure 
4.38, the first thing that one needs to do is to create spectral energy at the clock 
frequency. In the first example, a Fourier component at the data clock frequency 
is generated by the delay-and-multiply operation on the demodulated signal m(t). 
This frequency component is then extracted by the BPF that follows and shaped into 
square wave by the final stage. The second example generates the clock frequency 
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m(t) b BPF b 

Figure 4.38 Two types of open-loop symbol synchronizers. 

r 

Delay 
T/2 

component by using the differentiator-rectifier combination. The differentiator is 
very sensitive to wideband noise, therefore a low-pass filter is placed in the front 
end of the synchronizer. 

An early/late-gate circuit shown in Figure 4.39 is an example of the class of 
closed-loop synchronizers. The working principle is easily understood by referenc- 
ing Figure 4.40. The time zero point is set by the square wave clock locally gen- 
erated by the VCO. If the VCO square wave clock is in perfect synchronism with 
the demodulated signal m(t), the early-gate integrator and the late-gate integrator 
will accumulate the same amount of signal energy so that the error signal e = 0. If 
the VCO frequency is higher than that of m(t) ,  then m(t) is late by A < d, rela- 
tive to the VCO clock. Thus the integration time in the early-gate integrator will be 
T - d - A, while the integration time in the late-gate integrator is still the entire 
T - d. The error signal will be proportional to -A. This error signal will reduce 
the VCO frequency and retard the VCO timing to bring it back toward the timing of 
m(t) .  If the VCO frequency had been lower and the timing had been late, the er- 
ror signal would be proportional to +A, and the reverse process would happen, that 
is, the VCO frequency would be increased and its timing would be advanced toward 
that of the incoming signal. 

. q ( t )  

m't) b - d/dt ' 
t 

LPF 

r i r 

BPF b 
Full wavc 
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Figure 4.39 Early/late-gate clock synchronizer. 
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Figure 4.40 Earlyflate-gate timing illustration. 
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4.10.3 Effects of Phase and Timing Error 

As an example, we want to check the effects of phase and timing error on the bit error 
probability of coherent BPSK in the AWGN channel. 

If the local carrier is in error by q5 radians, the conelator output amplitude will 
be reduced by a factor cos 4. Thus the conditional bit error probability of BPSK will 
be 

If @ is Gaussianly distributed with variance a:, the bit error probability is [l5, p.270- 

27 11 

This is plotted in Figure 4.4 1 where different curves are labeled according to values of 
the standard deviation of the phase error om in radians. It is seen that when q, < 0.2, 
the degradation is not significant. 

The effect of a symbol synchronization error on the bit error probability of BPSK 
depends on the presence or absence of a symbol transition. If two successive sym- 
bols are identical, an incorrect symbol reference will have no effect on the error 
probability. If two successive symbols differ, the magnitude of the correlator output 
is reduced by a factor of 1 - (2)AIIT) where A is the timing error. Thus given a 
timing error, the conditional Pb is 

Pb(A) = Pr (error I transition, A)Pr(transition I A) 

+ Pr (error ( no transition, A)Pr(no transition I A) 

If the successive symbols are independent and equally likely to be either of the two 
binary symbols, the probability of transition is one-half, and, if the normalized timing 
error r = A/T is Gaussianly distributed, then 
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Figure 4.41 Effect of imperfect carrier synchronization on Pb of BPSK. 

where the integration limits are 0.5 to -0.5 which is the range of the timing errors [16. 
section 6-4 and 9-41, This is plotted in Figure 4.42, where different curves are labeled 
according to a value of the nu, where o, is the standard deviation of the timing error 
r. When TO, is less than 0.2, the degradation is not significant. 

It should be pointed out that (4.54) and (4.59, consequently Figure 4.41 and 
4.42, are based on the assumption that the errors are Gaussianly distributed [IS. p.270- 

271 I ,  which may not be accurate, depending on the carrier and clock recovery sys- 
tems. More accurate, but also more complicated, error distribution models and error 
probability results are given in [16, section 6-4 and 9-41. 

4.11 SUMMARY 

In this chapter we have covered all important PSK modulation schemes. We de- 
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Figure 4.42 Effect of imperfect symbol synchronization on Pb of BPSK. 

scribed all aspects, including signal expressions, waveforms, power spectral density, 
modulator, demodulator, and symbol or bit error probability. We started from the 
basic BPSK and its noncoherent version, DBPSK. Then we proceed to M-ary PSK 
and its differential version. For them we established general optimum demodula- 
tor block diagrams, error probability formulas, and PSD expressions. These results 
were later used for QPSK and DQPSK. However, QPSK and DQPSK are not merely 
special cases of MPSK and MDPSK. Their signal constellations allow for further 
simplification of the demodulators. Noticeably, phase calculation and comparison 
stages of the demodulators are replaced by level detectors. Offset QPSK, as a solu- 
tion to suppress sidelobe spread after bandlimiting and nonlinear amplifications, was 
briefly described due to its historical value. r/4-QPSK, as standard modulation in 
several digital cellular systems, was covered in great detail. Its modulator, base- 
band differential demodulator, IF-band differential demodulator, FM-discriminator 
demodulator, and coherent demodulator were described. Error performance was de- 
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Modulation 

BPSK 

DEBPSK 

DBPSK 
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DBPSK 
(Su boptimum) 

QPSK 

DEQPSK 

DQPSK 
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DQPSK 
(Suboptimum) 

~ /4 -QPSK 

MPSK ( ~ > 4 )  

(n = h g 2 M )  
DEMPSK 

DMPSK 

(Optimum ) 

pb 

= 2Q (J2) 
le -LaINo 

1 

Table 4.7 PSK schemes cornparion. 

Degradation 

0 

< 0.5 d~ 

0.5-1 dB 

2A2Tb ( ) 
Bnull = 1/Tb 

1 

(= DEQPSK) 

(= optimum DQPSK) 

~ ( i )  n 

PSD and BnUII 
' 

A ~ T ~  (w ) ' 
Bndl = 2/Tb 

= ~ ( J ? s i n +  ) 

0 dB (ref,) 
1 

< 0.5 dB 

2-3 dB 

, 

2-3 dB 

o d n ( r e t )  

Bnull = 1/Tb 

n~2~b(w)2 



190 Digital Modulation Techniques 

scribed. Finally we covered the synchronization. Carrier synchronization is needed 
for coherent PSK schemes. Symbol synchronization is needed for any digital mod- 
ulation schemes. Table 4.7 summarizes and compares the various aspects of PSK 
schemes described in this chapter. The error performance degradation is measured 
in increase of Eb/N, for achieving the same error probability, reference to the co- 
herent demodulation. BPSK and QPSK are the most widely used PSK schemes. 
This is due to their system simplicity and excellent power and bandwidth efficiency. 
Higher order MPSK can be used if higher bandwidth efficiency is desired and higher 
signal-to-noise ratio is available. 

Up to this point, we have studied classical frequency and phase shift keying 
schemes. In the rest of this book, we will study more bandwidth efficient and/or 
power efficient modulation schemes. In the next chapter, a scheme with important 
practical applications, minimum shift keying (MSK), which can be considered as an 
development From OQPSK or a special continuous phase FSK, will be studied. 

4.12 APPENDIX 4A 

To derive the expression for p ( v / H i ) ,  we first complete the square in exponent of 
p ( p ,  5/ZYi) by writing 

Then we integrate 

P ( P / ~  = 

- - 

p(p ,  8/'IYi) with respect to p to obtain the PDF of cp  

E 2  exp{-- sin 9) 
1 

- expi--(p - &cos p)2 }dp  
No N, 

Now change the variable to make the exponent be -t2. This requires 

or inversely 

p = JNat + &cosp 

Noting that dp = a d t ,  and when p = 0, t = -Jmcos 9, the integral 
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becomes 

The first term of the integral is 

The second term of the integral is 

,/z cos $9 
e x p i - t 2 w  

where 

is the error Junction which has the following properties 

and 

We have used these properties in deriving (4.58). Substituting (4.57) and (4.58) into 
(4.56) we have 
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Factorizing & exp{ - 5 cos2 p} out of the bracket we obtain 
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Chapter 5 

Minimum Shift Keying and MSK-Type 
Modulations 

In the previous chapter we have seen that the major advantage of OQPSK over QPSK 
is that it exhibits less phase changes at symbol transitions, thus out-of-band interfer- 
ence due to band limiting and amplifier nonlinearity is reduced. This suggests that 
further improvement is possible if phase transitions are further smoothed or even be- 
come completely continuous. Minimum shift keying (MSK) is such a continuous 
phase modulation scheme. It can be derived from OQPSK by shaping the pulses 
with half sinusoidal waveforms, or can be derived as a special case of continuous 
phase frequency shift keying (CPFSK). 

MSK was first proposed by Doelz and Heald in their patent in 1961 [ I  1. De- 
Buda discussed it as a special case of CPFSK in 1972 p]. Gronemeyer and McBride 
described it as sinusoidally weighted OQPSK in 1976 [3]. Amoroso and Kivett sim- 
plified it by an equivalent serial implementation (SMSK) in 1977 p]. Now MSK has 
been used in actual communication systems. For instance, SMSK has been imple- 
mented in NASA's Advanced Communications Technology Satellite (ACTS) [ s ]  and 
Gaussian MSK (GMSK) has been used as the modulation scheme of European GSM 
(global system for mobile) communication system 161. 

This chapter is organized as follows: Section 5.1 describes the basic MSK (i.e., 
parallel MSK) in great detail in order for the readers to grasp the fbndamental con- 
cept and important properties of MSK thoroughly. Section 5.2 discusses its power 
spectral density and bandwidth. MSK modulator, demodulator, and synchronization 
are presented in Sections 5.3, 5.4, and 5.5, respectively. MSK error probability is 
discussed in Section 5.6. Section 5.7 is devoted to SMSK in a great detail because 
of its importance in practical applications. MSK-type schemes which are modified 
MSK schemes for better bandwidth efficiency or power efficiency, are discussed in 
detail in Sections 5.8 through 5.13. However, GMSK is not covered in this chapter, 
instead, it is discussed in Chapter 6 in the context of continuous phase modulation. 
Finally, the chapter is concluded with a summary in Section 5.14. 
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5.1 DESCRIPTION OF MSK 

5.1.1 MSK Viewed as a Sinusoidal Weighted OQPSK 

In OQPSK modulation, i ( t )  and Q ( t ) ,  the staggered data streams of the I-channel 
and Q-channel are directly modulated onto two orthogonal carriers. Now we weight 
each bit of I ( t )  or Q ( t )  with a half period of cosine finction or sine fbnction with a 
period of 4T, A cos(.rr/2T) or A sin(.rr/2T), respectively, then modulate them onto 
one of two orthogonal carriers, cos 27~ f,t or sin 27r f,t, by doing these we create an 
MSK signal 

.rrt 7r-t 
s ( t )  = AI(t)cos(-)  cos 27r f,t + AQ(t)sin(-)sin2~ f,t 2T 2T (5.1) 

where T is the bit period of the data. 
Figure 5.1 shows the waveforms of MSK at each stage of modulation. Figure 

5.1 (a) is the i ( t  ) waveform for the sample symbol stream of (1, - 1,1,1, - 1 } . Note 
that each I ( t )  symbol occupies an interval of 22' from (2n - l)T to (2n + 1)T: 
n = 0,1 ,2 . .  . . Figure 5.1(b) is the weighting cosine waveform with a period of 4T, 
whose half period coincides with one symbol of i ( t ) .  Figure 5 4 c )  is the cosine 
weighted symbol stream. Figure 5 4 d )  is the modulated I-channel carrier that is 
obtained by multiplying the waveform in Figure S.l(c)  by the carrier cos 2x f,t. This 
signal is the fvst term in (5.1). 

Figure 5.l(e-h) shows the similar modulation process in Q-channel for the Sam- 
ple Q ( t )  stream of { 1,1, - 1 , 1 ,  - 1 }.  Note that Q ( t )  is delayed by T with respect 
to i ( t ) .  Each symbol starts from 2nT and ends at (272 + 2)T, n = 0 ,1 ,2 ,  .. .. The 
weighting signal is sine instead of cosine, thus each half period coincides with one 
symbol of Q(t ) .  Figure 5.1 (h)  is the second term in (5.1). 

Figure 5.l(i) shows the composite MSK signal s ( t ) ,  which is the sum of wave- 
forms of Figure 5. l (d) and Figure 5. l (h).' 

From Figure 5. l ( i )  we observe the following properties of MSK. First, its en- 
velope is constant. Second, the phase is continuous at bit transitions in the carrier. 
There are no abrupt phase changes at bit transitions like in QPSK or OQPSK. Third, 
the signal is an FSK signal with two different frequencies and with a symbol duration 

The MSK defined in (5. I )  and illustrated in Figure 5.1 is called Type I MSK where the weighting is 
alternating positive and negative half-sinusoid. Another type is called Type I1 MSK where the weighting 
is always a positive half-sinusoid [7]. These two types are the same in terns of power spectral density. 
which is determined by the shape of the half-sinusoid, and error probability, which is determined by the 
energy of the half-sinusoid. The only difference between them is the weighting signal in the modulator 
and the demodulator. Therefore it suffices to analyze Type I only in the rest of this chapter. 
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Figure 5.1  MSK waveforms. 
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of T .2  

To better understand the above properties we rewrite (5.1) in a different form. 
In the kth bit period of T seconds, 1 ( 6 )  and Q ( t )  is either 1 or -1, we denote them 
as Ik and Qk, thus 

nt nt 
s ( t )  = kAcos(-) cos 2.rrfct * Asin(-)sin2n f,t 

2T 2T 

where dk = 1 when Ik and Qk have opposite signs (i.e., successive bits in the serial 
data stream are different), and dk = -1 when Ik and Qk have same signs (i.e., 
successive bits in the serial data stream are the same). Or equivalently 

ak = 0 or x corresponding to Ik = 1 or -1. Or equivalently 

Both dk and (Pk are constant in a bit period of T seconds since Ik and Qk are 
constant in T .  

It is clear from (5.2) that MSK signal is a special FSK signal with two frequencies 
f+ = f, + 1/4T or f- = f, - 1/4T, where f+ is called space frequency, f- mark 
Frequency, and f, apparent carrier frequency. The frequency separation is A j = 
1/2T. This is the minimum separation for two FSK signals to be orthogonal, hence 
the name "minimum shift keying." 

Ordinary coherent FSK signal could have continuous phase or discontinuous 
phase at bit transitions (see Figure 3.3). MSK carrier phase is always continuous at 
bit transitions. To see this, we check the excess phase of the MSK signal, referenced 
to the carrier phase, which is given by 

Because ak is constant in the interval [kT, (k  + 1)T], O ( t )  is linear and continuous 

Note that the MSK signal has a symbol duration o f  T instead o f  2T despite that the symbol 
durations are 2T for I ( t )  and Q( t ) .  This property is the same as that of OQPSK since both of them have 
a staggered Q-channel symbol stream. QPSK has a symbol duration o f  2T. 
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in the interval [kT, (k  + 1)T]. However, to ensure phase continuity at bit transitions, 
at the end of the kth bit period, we must require 

In the following we will show that this requirement is always satisfied for the MSK 
signal in (5.1). 

Note that since dk  = -Ik&, and Q k  = (1 - I k ) x / 2 ,  the left-hand side (LHS) 
and the right-hand side (RHS) of (5.6) become 

7r 7T 
L H S  = - I k Q k ( k  + + 2(1 - I k )  (5.7) 

Because Ik and Qk each occupies 2T and are staggered, we can assume Ik = Ik+1 

for odd k and Qk = Q k + l  for even k (or vice versa). Thus, if k is odd, Ik = Ik+1, 

Compare (5.9) to (5.7), we can see that 
ment 

to make them equal is to satisfy the require- 

This obviously is true when Qk = Qk+l. When Q k  # Qk+l ? then Qk = -Qk+1 ! 

the above requirement becomes 

7r 
- I x Q k ( k  + 1); = + 1) (mod 2n) 

Since k is odd, (k + 1 )  is even, and note that Ik = k1 and Qk = k1, the above 
requirement becomes 

-mr = mn (mod 27r) 

If m is odd, f ms = s(mod 2 ~ ) .  If rn is even, f ms = O(mod 2 x ) .  Thus, in any 
case, the requirement is satisfied. 

If k is even, Qk = Q k + l ,  again we have two cases. First case, Ik = I k f l ,  it is 
easy to see that (5.7) is equal to (5.8). Second case, Ik # ik+ (k., ik = -Ik+ i ) ,  

then 

LHS = -IkQk(k + 1); + t(1 - Ik) 
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1 1 -(k + 1); (k + 3): = (k + 2 ) ~  + LHS = L H S  (mod 2x) 
1 -1 (k+l)% ( - k + l ) $ = - k a + L H S = L H S ( m o d Z n )  
-1 1 (k i -1) ;  ( - 1 )  sameasthesecondcase 

-1 -1 (-k4-1): ( k + l ) $  sameasthesecondcase 

Table 5.1 Possible cases (note that k is even). 

Table 5.1 shows all possible cases of the above two expressions. As seen from Table 
5.1, in all cases LHS = RHS (mod 2n). 

The above proof shows that the excess phase Q ( t )  is always continuous. The 
phase of the apparent carrier is 2x f,t which is also continuous at any time. Therefore 
the total phase, 2 r f c t +  8(t), is always continuous at any time. Note that in the 
above discussion we did not specify any relationship between f, and the symbol rate 
1/T. In other words, for the MSK signal phase to be continuous, no specific relation 
between f, and 1/T is required. However, as we will show in Section 5.4, preferably 
fc should be chosen as a multiple of 1/4T, but it is for orthogonality of its I-channel 
and Q-channel signal components, not for continuous phase purpose. 

From the above discussion we also can see that 8 ( k T )  is a multiple of n/2. 
However, the total phase at bit transitions (or initial phase of the bit), 2nfckT+ 
8 (kT) ,  is not necessarily a multiple of n/2.  It could be any value depending on 
the value of fc in relation to the bit period T. If f, is a multiple of 1/4T (i.e., 
f, = m/4T) for a positive integer m, then 2n fckT = mkx/2, which is a multiple 
of 7~12. Thus the total phase at bit transitions is also a multiple of n/2.  If fc is not 
a multiple of 1/4T, then the total phase at bit transitions is usually not a multiple 
of s/2. As we have pointed out above, jc is indeed usually chosen as a multiple of 
1/4T for orthogonality of its I-channel and Q-channel signals. Consequently, the 
total phase at bit transitions is a multiple of ~ / 2 .  

The excess phase 8(t) increases or decreases linearly with time during each bit 
period of T seconds (see ( 5 . 5 ) ) .  If dk = 1 in the bit period, the carrier phase is 
increased by 7r/2 by the end of the bit period. This corresponds to an FSK signal at 
the higher frequency f+. If dk = - 1 in the bit period, the carrier phase is decreased 
by x / 2  by the end of the bit period. This corresponds to an FSK signal at the lower 
frequency f-. Figure 5.2 is the phase tree of MSK signal's excess phase O ( t ) .  The 
bold-faced path represents the data sequence dk = -IkQk for Ik and Q k  in Figure 
5 .1 .  The excess phase values at bit transitions are always a multiple of 7t/2. If fc 
happens to be a multiple of 1/T, then the excess phase values at bit transitions in the 
phase tree are also the total phase values of the carrier at bit transitions. From (5.5) 
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@(t) 

Figure 5.2 MSK excess phase tree. 

we can infer that ak is not the initial phase of the kth bit period, since t # 0 at the 
bit starting point. Rather it represents the ordinate intercept of the excess phase since 
ek = 0 ( 0 ) .  In Figure 5.2 we show cP1 = -n as an example, which is the ordinate 
intercept of the excess phase at time t = T for the bold-face path. 

Figure 5.3 is the phase trellis of 8(t). A trellis is a tree-like structure with merged 
branches. In Figure 5.3 nodes with the same phases in a modulo-2x sense are merged. 
The only possible phases at bit transitions are f 7r/2 and &a. The data sequence of 
Figure 5.1 is again shown as the bold-faced path. 

5.1.2 MSK Viewed as a Special Case of CPFSK 

MSK can also be viewed as a special case of CPFSK with modulation index h = 0.5. 
In Chapter 3 we express CPFSK signal as (see (3.3)) 
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Figure 5.3 MSK excess phase trellis. 

which can be written as 

where 

where dk is input data (*I) transmitted at rate Rb = 1/T. h is modulation index 
which determines the frequency shift in the bit interval. In fact the frequency shift is 
hdk/2T.  cPk is constant in the bit interval; but it is not the initial phase of the bit. It 
represents the ordinate intercept of the excess phase O ( t )  = hdknt/T + Gk, as we 
mentioned before. 

With h = 0.5 the signal becomes 

which is exactly the signal in (5.2). 
To maintain continuous phase at bit transition t = kT, the following conditions 
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must be met 

This is 

7rk 
= @k-l + - (dk- l  - dk) (mod 2a) 

2 

% =  { (mod 2n), dk = dk-1 
Qkbl k rk (mod2a), dk f dk- l  

Assume that Qo = 0, then ak = 0 or R depending on the value of @ k - l  and the 
relation between dk and dk-  1. 

In the previous section we have shown that when dk is derived from the stag- 
gered I-channel and Q-channel bit streams by dk = - IkQk ,  then Q k  = 0 or a ,  and 
phase is continuous at any time, including bit transitions. Equivalently, dk can be 
generated by differential encoding of the data stream 171 

where { a k )  is the original data stream, $ represents exclusive-OR (XOR) operation 
(refer to Section 4.2 discussing DPSK for differential encoding). This equivalence 
can be verified by examining some arbitrary examples. This fact implies that MSK 
signal can be generated as CPFSK signal with h = 0.5, and the sign of frequency 
shift of each bit is controlled by the differentially encoded input bit stream. The MSK 
signal realized in this manner is called fast frequency shift keying, or FFSK p]. 

5.2 POWER SPECTRUM AND BANDWIDTH 

5.2.1 Power Spectral Density of MSK 

In Appendix A we have shown that the PSD of a bandpass signal is the shifted version 
of the equivalent baseband signal or complex envelope's PSD. Therefore it suffices 
to determine the PSD of the equivalent baseband signal S(t) .  The MSK signal of 
(5.1) consists of the in-phase component and the quadrature component which are 
independent from each other. The PSD of the complex envelope is the sum of the 
PSDs of these two components (A.21). 
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To find QI( f )  and QQ( f ) ?  refer to (A.19). It shows that the PSD of a bi- 
nary, bipolar (f 1), equiprobable, stationary, and uncorrelated digital waveform is 
just equal to the energy spectral density of the symbol shaping pulse divided by the 
symbol duration. In MSK, the symbol shaping pulses are 

Acos s, - T < t g  
p ( t )  = { 0, elsewhere 

for I-channel and 

for Q-channel. Note their durations are ZT, not T. Since there is only a phase factor 
between their Fourier transforms, their energy spectral densities are the same. By 
taking a Fourier transform of either function, say, p ( t ) ,  and square the magnitude, 
divide by ZT, we have 

Therefore 

Figure 5.4 shows the Qj( f )  of MSK along with those of BPSK, QPSK, and 
OQPSK. They are plotted as a function o f f  normalized to the data rate Rb = 1/T. 
The MSK spectrum falls off at a rate proportional to (f /Rb)-4for large values of 
f /Rb .  In contrast, the QPSK or OQPSK spectrum falls off at a rate proportional to 
only (f / R ~ )  - 2 .  The BPSK spectrum also falls off at a rate proportional to (f  / Rb)-* 
even though its spectral lobe widths are double that of QPSK or OQPSK. The main 
lobe of the MSK spectrum is narrower than that of BPSK spectrum and wider than 
that of the QPSK or OQPSK spectrum. The first nulls of BPSK, MSK, and QPSK 
or OQPSK spectrum fall at f /Rb = 1.0,0.75, and 0.5, respectively. Therefore the 
null-to-null bandwidth is 2.0Rb for BPSK, 1.5Rb for MSK, and 1 .ORb for QPSK or 
OQPSK. 

5.2.2 Bandwidth of MSK and Comparison with PSK Schemes 

Another useful measure of the compactness of a modulated signal's spectrum is the 
fractional out-of-band power, Pob, defined by (2.2 1). 
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(dB) -40 

- 60 

I MSK 
/ 

Figure 5.4 MSK power spectral density. 

Figure 5.5 shows the Po@) for BPSK, QPSK or OQPSK, and MSK as a hnc- 
tion of two-sided bandwidth 2B normalized to the binary data rate. From this figure 
we can see that MSK has a bit more out-of-band power than QPSK or OQPSK for 
2B < 0.75Rb, and less out-of-band power for 2B > 0.75Rb. The bandwidths con- 
taining 90% of the power for these modulation schemes can be obtained by numerical 
calculations. The results are as follows 

Bg0% 1.7% (BPSK) 

These can also be approximately obtained by noting the bandwidths on the curves 
corresponding to Pob = - 10 dB. Because the MSK spectrum falls off much faster, 
a more stringent in-band power specification, such as 99%, results in a much smaller 
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*\ i BPSK I 

\ 
- - - - - ----.- 

QPSK or OQPSK 

Figure 5.5 Fractional out-of-band power o f  MSK, BPSK, and QPSK or OQPSK. 
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Figure 5.6 MSK modulator (I).  

bandwidth for MSK than for BPSK, QPSK or OQPSK. The numerical results are 

Bg9% = 10Rb (QPSK or OQPSK) 

Bg9% * 20Rb (BPSK) 

These can also be obtained by noting the bandwidths on the curves corresponding to 
Pob = -20 dB. 

These comparisons suggest that for system bandwidths exceeding about 1.2Rb, 
MSK should provide lower BER performance than QPSK or OQPSK. However, as 
system bandwidths decrease to 0.75Rb, their BER performance should be very close 
since all of them have 90% in-band power. As system bandwidths decrease below 
0.75Rb, the BER performance of QPSK or OQPSK should be better. As system 
bandwidth is increased, their BER performance converges to infinite bandwidth case, 
that is, they have the same BER performance. The precise boundaries of regions 
of superior performance for each modulation scheme are difficult to determine in 
practical situations, since the detailed channel characteristics must be considered. 

5.3 MODULATOR 

Figure 5.6 is the MSK modulator implemented as a sinusoidal weighted OQPSK. I t  
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Figure 5.7 MSK modulator (11). 

is directly based on (5.1). The data stream signal a(t) is demultiplexed into I ( t )  and 
Q(t)  by the serial-to-parallel converter (SIP). The in-phase channel signal i ( t )  con- 
sists of even-numbered bits, and the quadrature channel signal Q(t)  consists of odd- 
numbered bits. Each bit in I ( t )  and Q ( t )  has a duration of 2T. Q( t )  is delayed by T 
with respect to I@).  I ( t )  is multiplied by A cos nt/2T and cos 2n f,t in the two sub- 
sequent multipliers in the I-channel. Q(t) is multiplied by A sin rt/2T and sin 27r fct 
in the two subsequent multipliers in the Q-channel. A sin 7rt/2T and sin 2n f,t are 
obtained through 7r/2 phase shifters from A cos xt/2T and cos 277 f,t, respectively. 
In the summer, the I-channel and Q-channel modulated signals are added to obtain 
the MSK signal. Previous discussion has shown that A cos nt/2T and cos 27r fct 
need not be synchronized. Therefore A cos d / 2 T  and cos 27~ f,t can be generated 
by two independent oscillators. 

Figure 5.7 is an alternate implementation. The advantage of it is that carrier 
coherence and the frequency deviation ratio are largely unaffected by variations in 
the data rate 181. The first stage is a high-frequency multiplier which produces two 
phase coherent frequency components 
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Differential Encoding 

Figure 5.8 MSK modulator (111). 

and 

where f+ = f, + 1/45? and f- = f, - 1/4T. These two sinusoidal waves are sepa- 
rated from each other by two narrow-band filters centered at f+ and f -, respectively. 
At the two summers' outputs, the signals are 

for I-channel and 

#Q(t) = s ~ ( t )  - s Q ( ~ )  

- - 1 1 
--Acos2nf+t + - A c o s 2 ~ f - t  

2 2 
= A sin 7rt/2T sin 27r f,t (5.1 8) 

for Q-channel. These two signals are the sinusoidally weighted carriers. They are 
further modulated by I ( t )  and Q(t ) ,  respectively, and then summed to form the final 
MSK signal. 

Figure 5.8 is the MSK modulator implemented as a differentially encoded FSK 
with h = 0.5 (FFSK). The FSK modulator can be any type as described in Chapter 
3. The only difference here is the differential encoder which consists of an exclusive 
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OR gate (XOR) plus a delay device of T seconds which returns the previous encoder 
output dk-1 to the XOR gate. 

5.4 DEMODULATOR 

Using the two basis functions defined in the previous section, the MSK signal in the 
kth bit interval can be written as 

It can be shown that #*(t) and dQ(t )  are orthogonal for f, = n/4T, n integer (n  f 
I), over a period of  T. 

Proof 

( k + l ) T  7rt nt 

= h, A'COS(-) cos 27r fct sin(-) sin 2n f,tdt 
2T 2T 

The first term integrates to 

This will be zero when3 
7r mmn 

4~ f, - - = - ,m integer (m # 0) 
T T '  

This is 

( m + 1 )  n 
f c  = - -  - 

4T 4T ' 
n integer (n # 1) 

This obviously also holds for the second term. This concludes the proof. 

When rn = 0, we have a limit lim,,o sin s/x = 1 and the integral in (5.19) evaluates to ~ ~ / 8 .  
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Sampler 
(2n+ I )T 

t=  (2n+l)T 

L Threshold 
detector 

Figure 5.9 MSK demodulator ( I ) .  

When n is not an integer, 4, ( t )  and q ! ~  ( t )  are essentially orthogonal for f, > > 
1/T, which is the usual case. This is because the coefficient in front of the sine 
function in (5.19) is very small when f, >> 1/T. From now on for all practical 
purposes, we consider that #I  (t) and t$Q ( t )  are orthogonal in a period of T. It follows 
that they are also orthogonal in a period of 2T. 

Since &(t)  and cPQ(t) are orthogonal, the optimum coherent demodulation of 
MSK is very much similar to that of QPSK. Figure 5.9 is the optimum coherent 
MSK demodulator (the method of obtaining the reference signals and bit timing will 
be discussed in the next section). Since each data symbol in I ( t )  or Q(t )  occupies 
a period of 2T, the demodulator operates on a 2T basis. We now denote symbols as 
{ I k ,  k = 0 ,2 ,4 ,  ...) and {Qk ,  k = 1 ,3 ,5 ,  ...). For kth symbol interval, the integra- 
tion interval in the I-channel is from (2n - l)T to (271 + l)T and in the Q-channel 
is from 2nT to (272 + 2)T, where n = 0,1,2,  .... These intervals correspond to the 
respective data symbol periods (see Figure 5.1). In I-channel the integrator output is 
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(2nf  1)T 

= 1 I&(t)dt, (the second term vanishes due to orthogonality) 
(2n-  l )T  

(2nf  l )T 1 rt 1 

= 1 A ~ I ~  - ( 1  + cos(-)) - (1 + cos 4ri f,t)dt 
(2n- 1 ) ~  2 T 2 

Only the first term in the above integration produces a nonzero result. The integration 
of the second term is exactly zero. The integrations of the third terrn and the fourth 
term are exactly zero only when f, is a multiple of 1/4T (i.e., when the carriers 
of two channels are orthogonal). Therefore we usually choose f, as a multiple of 
1/4T. However, even i f f ,  is not a multiple of 1/4T, the integrations of the third 
term and the fourth terrn are not exactly zero; but they are very small in comparison 
with the first term for f, >> 1/T, which is usually the case. Therefore we can 
conclude that the sampler output of I-channel is essentially A2TIk/2 regardless of 
the carrier orthogonality, Similarly we can show that the sampler output of Q-channel 
is A ~ T Q ~ / ~ .  These two signals are detected by the threshold detectors to finally put 
out Ik and Qk. The thresholds of detectors are set to zero. 

Figure 5.10 is an alternate MSK demodulator where demodulation is accom- 
plished in two steps (the method of obtaining the reference signals and bit timing 
will be discussed in the next section). It is equivalent to the one in Figure 5.9. In the 
absence of noise, in I-channel, the output of the first multiplier is 

s ( t )  cos 2 x  fct 

1 nt 1 nt 
= -AI(t)cos(-) + -AI(t)cos(-) cos 47r f,t 

2 2T 2 2T 

After the low-pass filter the two high-frequency terms are rejected and its output is 
only the first term. It is then multiplied by the weighting signal and integrated for 
2T which is the symbol length of I (t)  and Q(t ) .  Since the symbols of i ( t )  and Q ( t )  
are staggered, the integrations limits are also staggered. For I-channel, the output of 
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cos - Threshold 

s(t)+n(t) cos2r$ 2T detector 
4 b nt 

sinBf, t sin - 2T 
_ A  

LPF 

Figure 5.10 MSK demodulator (11). 

the integrator at t = (271 + l)T is 

which is proportional to the data bit Ik. It is then sent to the detector with a threshold 
of zero. W~thout noise or other channel impairment, the detector output is definitely 
the data bit Ik. Similarly the output of the Q-channel integrator is ~ A T Q ~ .  Thus Qk 
can be recovered by the Q-channel detector. When noise or other channel impair- 
ment, such as bandlimiting and fading, are present, detection errors will occur. The 
bit error probability for an AWGN channel will be discussed in a later section. 

Since MSK is a type of CPM, it can also be demodulated as a CPM scheme 
with trellis demodulation using the Viterbi algorithm [7]. This will be discussed in 
the next chapter. Since MSK is a type of FSK, it can be demodulated noncoherently 
with about 1 dB asymptotic loss in power efficiency. The demodulated sequence is 
{dk), which can be converted back to the original data { a k }  by the decoding rule 
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Squarer 

MSK 2&,2f- 
2f+-2f-= l/T 

Sunde's FSK 

Clock 
signal 

Figure 5.11 MSK carrier and symbol-timing recovery. From [9) Copyright @ 1979 IEEE. 

ak = dk @ dk-l. This possibility of noncoherent demodulation permits inexpen- 
sive demoduiation of MSK when the received signal-to-noise ratio is adequate and 
provides a low-cost alternative in some systems. 

5.5 SYNCHRONIZATION 

For the demodulator in Figure 5.9, the reference carriers # I ( t ) ,  QQ (t),and the clock 
signal at 112 the bit rate needed at the samplers, are recovered fTom the received 
signal by the synchronization circuits in Figure 5.11. (With a little extra circuit it 
can be used for carrier recovery for the demodulator in Figure 5.10 too. This will 
be shown shortly.) The MSK signal s ( t )  has no discrete components which can be 
used for synchronization (Figure 5.4). However, it produces strong discrete spectral 
components at 2 f + and 2 f - when passed through a squarer. 
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where 2Gk = O(mod 274. The second term is the so-called Sunde's FSK signal with 
h = 1 and the two frequencies are 2 f+ and 2 f-. This signal has two strong discrete 
spectral components at 2 f+ and 2 f-, which contain one-half of the total power of 
the FSK signal (refer to Chapter 3). These components are extracted by bandpass 
filters (in practice, by phase-lock loops) and then divided by two in frequency to give 
sr ( t )  = cos 27r f+t and sQ ( t )  = cos 2n f-t. (Suppose their amplitudes are scaled to 
1 .) The sum sI ( t )  + SQ ( t )  and difference sr ( t )  - SQ ( t )  produce the reference carriers 

( t )  and OQ(t) (except a factor A), respectively, (see (5.17) and (5.18)). 
By multiplying sI (t) and sq (t) we have 

By passing this signal through a low-pass filter, the output is $ cos r t /T ,  a sinusoidal 
signal at 1/2 the bit rate, which can be easily converted into a square-wave timing 
clock for the integrators and the samplers in the demodulator. 

By passing the product signal through a high-pass filter the output is $ cos 4n f,t. 
Dividing its fiequency by 2 and scaling up its amplitude, we can get cos 27r f,t which 
is the carrier needed in the demodulator in Figure 5.10. The baseband sinusoidal 
weighting signal cos 7rt/2T needed in Figure 5.10 can also be extracted from the 
signal in (5.20) by a low-pass filter and a divide-by-two frequency divider. Thus the 
carrier and bit-timing recovery circuit in Figure 5.11 can be used for both demodu- 
lators in Figure 5.9 and 5.10, with little extra circuit for the one in Figure 5.10. 

There is a 180' phase ambiguity in carrier recovery because of the squaring op- 
eration. Since [f s( t )]  = s2 ( t )  , both s( t )  and -s( t)  generate the same references 
@ I  (t) and +q(t). This is the 1 80•‹ phase ambiguity. Therefore the demodulator out- 
puts in the I- and Q-channels will be - I ( t )  and -Q(t),  respectively, if the received 
signal is -s( t) .  One method to solve this problem is to differentially encode the data 
stream before modulation, as described in Chapter 4 for the DPSK. 

Recall that if MSK is implemented as FFSK, a differential encoder is needed at 
modulation and a differential decoder is needed at demodulation. If MSK is imple- 
mented as weighted OQPSK, the differential encoder and decoder are not needed. 
However, due to the 180' phase ambiguity in the carrier recovery operation, differ- 
ential encoding and decoding are needed in both cases. In this sense FFSK and MSK 
are essentially the same. 
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5.6 ERROR PROBABILITY 

The derivation of MSK bit error rate is very similar to that of QPSK in the previous 
chapter. 

Assume the channel is AWGN, the received signal is 

r ( t )  = s ( t )  + n(t)  

where n(t)  is the additive white Gaussian noise. Refer to the demodulator in Figure 
5.9 or Figure 5.10. The MSK signal is demodulated in 1-channel and Q-channel. 
Due to the orthogonality of the I and Q components of the MSK signal, they do 
not interfere with each other in the demodulation process. However, the noise will 
cause the detectors to put out erroneous bits. The probability of bit error (Pb)  or bit 
error rate (BER) is of interest. Because of symmetry, the 1- and Q-channels have 
the same probability of bit error (i.e., PbI = PbQ). In addition, the errors in the 
I-channel and Q-channel are statistically independent (it will be shown shortly) and 
the detected bits from both channels are directly multiplexed to form the final data 
sequence. Therefore it suffices to consider only PbI and this PbI is the Pb for the 
entire dem~dulator.~ 

Refer to Figure 5.10 (same results will be obtained by using Figure 5.9), at the 
threshold detector input the I-channel signal is 

where k = 2n and the noise 

S 
(2n+ l)T ; ~ r t  

,nlk = n,(t) cos( -) cos 2 ~ f , t d t  
(2,n- 1)T 2T 

which is Gaussian with zero mean (Refer to Appendix A). Its variance is 

Some authors calculate the symbol enor probability P, f rst. then derive the bit error probability Pb 
from P,. This i s  not necessary and strictly speaking. it is not right, since for MSK. we never detect 
symbols. instead. we detect bits in the demodulation process. 
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7Tt 7rT 
cos(-) cos 27r fct cos(-) cos 2 n f , ~ d t d ~  

2T 2T 

7Tt TT 
cos(-) cos 27r fct cos(-) cos 27r f c ~ d t d r  

2T 2T 

The detector has a threshold of zero. The probability of bit error in the I-channel is 

The bit energy Eb of the transmitted MSK signal is 

since the integration of the second term is zero? Thus the Pbl. expression can be 

Note that in one-bit duration, the MSK signal energy is constant even though the signal may have 
different frequencies from bit to bit. 
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written as 
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Similarly we can derive the expression of PbQ. The 

(5.23) 

result is identical to Pbr. Now 
it remains to show that errors on the 1- and Q-channels are statistically independent 
so that the overall bit error probability is Pb = (Pbr + PbQ)/2 = Pbl = PbQ. This 
requires that noise n r k  and n ~ k  are uncorrelated, for they are Gaussian and uncorre- 
lated Gaussian random variables are statistically independent. The noise component 
at the input of the Q-channel threshold detector is defined similarly to n r k  

nt 
n ( t )  sin(-) sin 27r fctdt  

2T 

The correlation of n r k  with n Q k  is given by 

E{nIknQk)  

(2n+l)T 7rt 
n(t) cos(- )  cos 27r f,tdt 

( 2 n - I ) T  2T 

nt 
n(t)  sin(-) sin 2x f,tdt 

2T 

nt 7rr 
cos(-) sin(-) cos 2a f,t sin 27r f c rd td r  

2T 2T 

nt TT 
COS(- ) sin(-) cos 27r f,t sin 27 f g d t d r  

2T 2T 

AT* P n + V  Ti  7rt 
- 
- Y L ~ T  

cos(-) sin(-) cos 2x jct sin 2n fctdt  
2T 2T 

where the limits of the last integral follow due to the fact that 6(t - T )  = 0 for t # 7. 

Thus n r k  and n Q k  are uncorrelated and hence independent since they are Gaussian. 
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As a result, the bit error probability of the entire demodulator f i  = PbI is given by 

which is exactly the same as that of BPSK, QPSK, and OQPSK whose Pb curve can 
be found in Figure 4.2 1 . 

5.7 SERIAL MSK 

The implementation of MSK modulation and demodulation discussed in Sections 
5.3 and 5.4 is in a parallel fashion. That is, the serial data stream is demultiplexed 
into even- and odd-indexed bits which are modulated and demodulated in two par- 
allel channels. The MSK modulation and demodulation can also be implemented in 
a serial fashion [4,10]. These two techniques are equivalent in performance theoret- 
ically. However, the serial implementation has advantages over the parallel one at 
high data rates. Serial MSK modulation and demodulation have the advantage that 
all operations are performed serially. The precise synchronization and balancing re- 
quired for the quadrature signals of the parallel structures are no longer needed. This 
is especially beneficial at high data rates. The serial technique is described in this 
section. 

5.7.1 SMSK Description 

Serial MSK modulator and demodulator are illustrated in Figure 5.12. The modulator 
consists of a BPSK modulator with carrier frequency of f- = f, - 1/4T and a 
bandpass conversion filter with impulse response 

s inZ~f+ t=s in2n( j ,+&) t ,  O < t < T  
h( t )  = { 0, elsewhere 

(5 . X )  

which corresponds to a sin(x) lx-shaped transfer function. We will show shortly 
why these operations produce an MSK modulated signal. 

The serial demodulator structure is essentially the reverse of that of the modula- 
tor. It consists of a bandpass matched filter followed by a coherent demodulator and 
a low-pass filter which eliminates the double-frequency component generated by the 
mixer. The matched filter is not necessary for demodulation, but it can improve the 
signal-to-noise ratio, hence the error performance 141. 
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Figure 5.12 Serial modulator and demodulator for MSK (a) modulator, (b) demodulator. 
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The matched filter impulse response is 

which has a transfer function proportional to the square root of the power spectrum 
of the MSK signal. We will show shortly how h,(t)  is determined. 

5.7.2 SMSK Modulator 

The following derivation basically follows that of Amoroso et al (41. We will prove 
that the output of the conversion filter in Figure 5.12(a) is the MSK signal. In general 
we can assume the local oscillation is 

f ( t )  = sin(2n f-t + 0 )  

where 0 represents the relative phase off-  and the data transition (9 = 7r/2 in Figure 
5.12(a) since the osciIIator output is cos(2n  f- t )  = sin(2n f- t + ~ 1 2 ) ) .  The typical 
input burst for a bit to the conversion filter is thus 

where the a k  E (-I, +1) represents the data. 
The output of the conversion filter is the convolution of h( t )  with ak f (t), which 

we denote as a k p e ( t )  (it is denoted as s ( t )  in Figure 5.12(a) for 0 = n/2 case). 

ak S& sin(2nf-T + 0 ) s i n 2 n f + ( t  - r ) d r ,  
k T  5 t 5 ( k  + l)T 

( k + l ) T  
ak St-T sin(% f-T + 0 )  sin 2 n  f+ ( t  - r ) d q  

( k  + l)T < t  < ( k  + 2)T 
0, elsewhere 

which spans a duration of 2T. The integration limits result from the fact that f (7) and 
h(t  - T )  are overlapped in [kT, t ]  for kT _< t 5 ( k  + 1)T and in [ t  - T, (k + 1)TI for 
( k  + l )T  < t 5 (k + 2)T. We will see shortly that when 0 = n/2, a k p e ( t )  becomes 
the M S K  signal. 

Working out the integrals, p e ( t )  can be reduced to the form 

P&) = [sin(Zn f-t  + 0 )  - ( - I ) ~  sin(2s f+t + 0 ) ]  
4 n ( f +  - f-) 
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For odd values of k (k = 2n + I ) ,  this reduces to 

nt 1 7rt 
pot, (t) = [COS - s i n ( 2 ~  fc t + 8 )  - - 

2T 
sin(--O)cos2xfct (5.26) 

4Tfc 2T 1 
where fc  = ( f +  + f-)/2 is the apparent frequency. For even values of k ( k  = 272). 
pe( t )  reduces to 

nt 1 nt 
ps,(t)  = T [- sin - cos(2nfct + 8) + - 

2T 
cos(- - 8 )  sin 2n f,t (5.27) 

7.r 4Tfc 2T 1 
Only when B = n/2, the above expressions become 

and 

T 4 T f c + 1  nt 
P$) = - sin - sin 2n f$,  2nT 5 t 5 (271 + 2)T (5.29) 

71- 4Tfc 2T 

Note that both p, ( t )  and p,(t) spans 2T. There is an overlap of T between them. In 
any one-bit interval, the final output of the conversion filter is one of the possible 
sums of these two components: 

T 4 T f c  + 1 
s ( t )  = * [ p o ( t )  + ~ e ( t ) l  = f 

4T f c  
cos 2x  f - t  

and 

These are exactly the MSK signals. It is clear from comparison that h ( t )  and p , ( t )  
are equivalent to the I- and Q-channel components of the parallel MSK. For p&) 
and p , ( t )  to be perfectly orthogonal, f, must be a multiple of 1/4T. 

Now one can realize that the essence of serial MSK. The conversion filter spreads 
a bunt of one bit of the BPSK signal over two-bit periods, weights the envelope by 
half cycle of cosine or sine, and modifies the carrier frequency from f- to f,. All 
these effects are accomplished through convolution. Due to the fact that the filter 
responds to odd bits and even bits differently, the final output can be viewed as the 
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superposition of these two outputs which are equivalent to I- or Q-channel signals in 
parallel MSK, respectively. 

Note that the BPSK signal phase 8 must be 75'2 for SMSK to be accurate. If 
0 f 7r/2, the terms 

1 -- 7rt 
sin(- - 8) cos 27~ f,t 

4Tfc 2T 

and 

1 7rt +- COS(- - 8 )  sin 2 7 4 t  
4Tfc 2T 

in (5.26) and (5.27), respectively, become undesirable. They cause the final SMSK 
signal envelope to fluctuate. However, for large ratio of f, to data rate, the factor 
1/4Tfc causes the undesired terms to vanish, leaving the resulting SMSK signal 
independent of 8. 

We can also verify the validity of SMSK in frequency-domain. The BPSK's 
single-sided spectrum is 

Q'BPSK ( f )  = 2 ~ s i n c ~  [( f - fc)T + 0.251 

The conversion filter transfer function is 

The power spectrum of the output of the filter is the product of Q B P S K (  f )  and 
IH( f )  l 2  which can be simplified to 

which is equivalent to the baseband power spectrum for MSK obtained earlier (5.14). 
except for a scaling factor. 

5.7.3 SMSK Demodulator 

The demodulation can be simply done by a coherent demodulator, that is, simply 
multiply the received signal with a local oscillation of frequency f- and low-pass 
filter the mixer's output to remove the double-frequency component. This simple 
coherent demodulator is the one shown in Figure 5.12(b) without the matched filter 
'The result is the recovered data bits. This can be shown as follows. 

Since the SMSK signal is the same as parallel MSK signal, the mixer input signal 
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expression is the one in (5.2). The mixer output is 

The first term is the double-carrier-frequency tern which will be eliminated by the 
low-pass filter. The second term (ignoring the constant $ A )  is 

nt ~t nt - C O S T ,  fordk = l , Q k  = T  
n(t) = cos(dk- + ax + -1 = { 

2T 27' 1 ,  for dk = -1, @k = 0 

Recall that dk = -IkQk and ek = :(I - Ik).  In serial MSK, Ik = ak and 
Qk = ak- 1 . We can establish the following relations 

Ik = ak Qk = ak-1 dk Q k  m(t) 
1 1 -1 0 1 
I -1 1 0  COS 

-1 1 Tt 1 a - cos T 
-1 -1 -1 7r -1 

It is clear that four different forms of the low-pass filter output m(t), uniquely deter- 
mines four different possible data pairs (ak, ak- 1 ), respectively, thus the demodula- 
tion is accomplished. 

Figure 5.13 shows how a BPSK coherent demodulator recovers the data stream 
from an MSK signal 141. Figure 5.13(a) is the data stream to be sent. Figure 5.13(b) is 
the frequency transmitted. Note that the frequency of each bit is determined by dk = 
- ak- a k .  Figure 5.13(c) shows the MSK signal phase and the local oscillation phase 
referenced to the phase off,. Figure 5.13(d) shows the phase at mixer output which 
is the difference of the MSK signal phase and the local oscillation phase. Figure 
5.13(e) is the final demodulated signal which is the cosine function of the phase 
difference at the mixer output and resembles the data stream transmitted. 

Even though we discuss this demodulation method in the context of SMSK, it is 
apparent that it can be used for parallel MSK too since the MSK signals are the same 
regardless of how they are generated. 

As mentioned earlier, the matched filter can improve the SNR even though it is 
not essential for SMSK demodulation. Now we determine its impulse response. 
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From the point of view of serial MSK, the MSK signal can be viewed as a sum of 
odd- and even-bit components, which are equivalent to I- and Q-channel components 
of the parallel MSK signal. The matched filter should match to the I- and Q-channel 
components at the same time. Consider a symbol of the MSK signal. As shown in 
(5.1 ) it is the result of superposition of the I- and the Q-channel component where 

7rt 
pI ( t )  = cos ( - )  cos(27r fct)? -T 5 t 5 T 

2T 

and 

are the basic symbol functions for the I- and Q-channel, respectively. It seems that 
the matched filter can only be chosen to match to one of them. However, we now 
show that the matched filter chosen to match to yI  (t) also matches to yQ(t)  as far 
as the baseband output is concerned. 

According to the matched filter theory, to match to the I-channel symbol, the 
matched filter impulse response should be the scaled mirror image of it, delayed by 
the signal duration 2T: 

hm ( t )  = a C O S ( : ( ~ T  - t ) )  cos(2x fc (2T - t ) ) ,  2T 

. / I  L 
= a(-qm+' cos - cos 2~ f,t, 2T 

where f, = m/4T is assumed and a(-l)m+' is merely a scaling constant which 
can be set to unity. The response of the matched filter to pI (t) is 

where * denotes convolution. Then this signal is multiplied by the local carrier and 
low-pass filtered to give the final demodulated baseband symbol (detail omitted) 

Working out the integrals (factor 1/4 omitted) the final demodulated baseband sym- 
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bol is 

which is shown in Figure5 I4(a). It is clear that matched filtering spreads the symbol 
to occupy 47' periods. Fortunately the output has zero values at all sampling instants 
except for at the center of the pulse. In other words, it introduces no intersymbol 
interference (ISI) if timing is accurately maintained. 

By similar procedure, the Q-channel demodulated baseband symbol is found as 
(a constant factor 1/4 is omitted) 

which is also shown in Figure 5.14(a) (dotted line). It can be seen that it is merely 
a time shifted version of the I-channel demodulated symbol. It is easy to verify that 
mr (t  - T )  = mq (t). 

Intuitively, why the matched filter treats I- and Q-channel symbols equally can 
be explained as follows. If we shift ipq( t )  to the left by T to coincide with gl (t) on 
the time axis, it becomes 

where 6' = 27~ fcT. This means (oq(t) and pI( t )  have the same envelope despite 
that their carriers may have phase difference. Therefore (5.30) is the same for the 
Q-channel since it only involves the convolution of envelopes. Consequently the 
results are the same except for a time delay of T. 

Figure 5.14(b) shows the resultant demodulated signal for the same sequence in 
Figure 5.13. 

The transfer function of the low-pass equivalent matched filter is 

which is proportional to the square root of the PSD of the MSK signal. 

5.7.4 Conversion and Matched Filter lmplemen tation 

The critical system components of the serial MSK are the biphase modulator, the 
bandpass conversion and matched filters, and the coherent demodulator (including 
carrier recovery). The modulator and the demodulator are no more special than the 
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Figure 5.14 Demodulation of MSK signal with matched filter and coherent BPSK demodulator: (a) 
I-channel symbol, (b) Q-channel symbol, (c) demodulator output for the data sequence of Figure 5.13.  
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ones for BPSK. What are special here are the bandpass coriversion and matched 
filters. They have been implemented with surface acoustic wave (SAW) devices. The 
maximum bandwidth of SAW devices is about 10% to 30% of the center frequency. 
For production SAW'S, center frequencies of a few hundred MHz represent the upper 
limit, assuming normal fabrication techniques, with 1 GHz representing the upper 
Limit if laser trimming and other special techniques are used. Thus the use of SAW 
filters implies an upper limit on data rate of about 100 Mbps, assuming the use of 
normal fabrication techniques [ I  01. 

An alternative to SAW implementation is the one utilizing baseband I/Q equiv- 
alents for the conversion and matched filters as shown in Figure 5.15. In Figure 
5.15(a), data are demultiplexed into I/Q channels and filtered in baseband before 
being modulated onto two orthogonal carriers. Basically the reverse is done in the 
demodulator in Figure 5.15(b). Note that all reference signal frequencies in Figure 
5.15 are the lower frequency of the two MSK frequencies: f - . 

The frequency responses of the baseband conversion and matched filters were 
derived in (101. The frequency response of the conversion filter is 

T sin ri( f T - 0.5) sin n( f T + 0.5)] 
Hdf)  = y [ * ( f T  - 0.5) 

+ 
n( f T + 0.5) exp( -jnf T )  

for I-channel and 

T sin n( f T - 0.5) sin rr( f T + O . 5 ) ]  
H ~ ( f ) = j ~  [ a ( f T - 0 . 5 )  

- 
r ( f T  + 0.5) 

e x p ( - j ~ f  T )  

for Q-channel. The overall equivalent low-pass transfer function of the conversion 
filter is 

sin ?r( jT - 0.5) 
= T 

x( fT  - 0.5) exp( -.irf T )  

These filter transfer functions are shown in Figure 5.16 (factor exp(-jr fT) or 
j exp(- j~ f T) not included). From the figure we can see that the I-channel transfer 
fbnction is low-pass and an even function of frequency and that the Q-channel trans- 
fer function is high-pass and an odd function of frequency. The total transfer function 
is a bandpass response with even symmetry about the frequency f+ = f ,  + 1/4T. 

The frequency response of the matched filter is 
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v 

(NRZ data) 

Figure 5.15 Baseband implementation of SMSK: (a) modulator3 (b) demodulator. 
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for I-channel and 

for Q-channel. The total response of the low-pass equivalent matched filter is 

The matched filters' responses are shown in Figure 5.17 (factor j not included). As 
in the case of the conversion filters, HmI ( f )  is even, low-pass, and HmQ ( f )  is odd, 
high-pass. The total transfer function Gi, ( f )  is a bandpass response with even sym- 
metry about the frequency f,. 

These baseband filters can be implemented by transversal filter configuration as 
described in [lo). At very high data rates (e.g., 550 Mbps), these filters can be imple- 
mented by microwave stripline as reported in [lo] for the advanced communications 
technology satellite of NASA. 

5.7.5 Synchronization of SMSK 

Two approaches can be used to recover the carrier for the SMSK signal. One is the 
synchronization circuit for the parallel MSK described in Section 5.1, which involves 
squaring the received signal to produce spectral components at 2 f- and 2 f+. Since 
SMSK is mainly devised for high data rates, this approach is not satisfactory as it 
involves doubling the already high-frequency components. 

Another approach is to use a Costas loop as shown in Figure 5.1 8. This structure 
is especially suitable for the I/Q demodulator structure in Figure 5.15(b), since the 
I- and Q-channel demodulated signals are already available for the matched filter 
implementation. The circuitry on the right of the dotted line in Figure 5.18 is the 
extra needed to form the Costas loop [lo]. 

There exists a 180" phase ambiguity in the carrier acquisition loop due to the 
baseband multiplier [lo]. One method to remove this ambiguity is to deferentially 
encode the data before modulation, as described in Chapter 4. 

5.8 MSK-TYPE MODULATION SCHEMES 

After MSK was introduced, a lot of research effort was devoted to finding even more 
bandwidth-efficient modulation schemes. To improve bandwidth efficiency while 
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Figure 5.16 Baseband conversion filter frequency response. 
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Figure 5.17 Baseband matched filter frequency response. 
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LPF 
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Figure 5.18 Costas loop for SMSK. 

maintaining a constant envelope, one development direction is the continuous phase 
modulation with constant envelope, which has evolved into a large class of modula- 
tion schemes as we will study in Chapter 6 and 7. Another direction is to improve 
the spectra by using pulse shaping in quadrature modulation. In other words, new 
schemes are still based on two quadrature carriers like in MSK. However, the sym- 
bol shaping pulses are no longer half cosine. Instead, other pulse shapes are used. 
These schemes are sometimes called MSK-type schemes. All MSK-type signals can 
be expressed as 

where sl (t)  and sQ (t)  are 
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where T is the bit time interval corresponding to the input data sequence {ak E 
(-1, +I)) that has been demultiplexed into {Ik) and {Qk). It is clear that each data 
symbol lasts for a duration of 2T in I- and Q-channels. Each data is weighted by a 
pulse-shaping function p ( t )  which has a fmite duration of 2T. Just like MSK, a delay 
of T is introduced in the Q-channel, that is, the I- and Q-channel modulating signals 
are staggered. Also just like MSK, due to the staggering of the I- and Q-channels, the 
symbol duration of the MSK-type signal is T instead of 2T despite that the symbol 
durations are 2T for ( t )  and s q ( t ) .  However, demodulation must be performed in 
a 2T duration. 

For MSK-type schemes, the basic MSK modulator and demodulator in Figures 
5.6 and 5.9 are applicable except that the pulse-shaping function must be replaced 
accordingly Therefore for these schemes we will not repeat the description of the 
modulator and demodulator. Further, the serial MSK modulator and demodulator 
(Figure 5.12) can also be used for these MSK-type schemes, provided that the con- 
version filter in the modulator must be redesigned so that 

where il', (f)  is the MSK-type signal spectrum, H( f )  is the conversion filter transfer 
function, and lVBPSK ( f )  is the spectrum of the BPSK signal which enters the filter. 
In the serial demodulator the matched filter must match to the pulse shape. 

If the suboptimum receiver is acceptable, then all MSK-type schemes can be 
demodulated by a OQPSK-type demodulator where baseband correlation with p ( t )  
or matched filtering matched to p( t )  is omitted. 

By choosing different p( t ) ,  a variety of modulation schemes can be obtained. 
Sometimes p( t )  is indirectly determined by choosing the frequency pulse of the sig- 
nal. The spectrum of the signal is determined by the pulse p ( t ) .  In the following 
sections we will study a variety of pulse-shaping techniques that are primarily de- 
signed for satellite communications. What we are looking for from these modulation 
schemes are compact spectrum, low spectral spreading caused by nonlinear ampli fi- 
cation, good elror performance, and simple hardware implementation. Ilk will de- 
scribe a particular scheme or a class of schemes in each section. The emphasis is on 
the pulse shape and spectral properties. The error performance is also evaluated and 
often compared with that of MSK. 
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Figure 5.19 SFSK pulses: (a) amplitude pulse, (b) frequency deviation pulse. 

5.9 SINUSOIDAL FREQUENCY SHIFT KEYING 

Amoroso first proposed an alternate symbol shaping pulse as []I]  

nt 1 27rt 
C O S [ ~ - ~ S ~ ~ ~ ] ,  - T < t < T  

p ( t )  = { 0, elsewhere 

This scheme was named as sinusoidal frequency shift keying (SFSK) since the signal 
can be synthesized by applying a keyed sine wave to a linear integrator followed 
by a linear frequency modulator. Sensitivity of the spectrum to pulse shaping was 
examined by varying the factor value in front of the sine function. By comparing 
spectra for different factor values, it was found that 114 is the value for the lowest 
sidelobes i 13. 

Figure 5.19(a) shows the pulse shape in comparison with that of MSK. 
This scheme has a constant envelope, because in any symbol period, say [O, TI, 

the envelope 

- - - sin - 
2T 4 T 2T 

- sin - 
4 T 
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This scheme also has a continuous phase. Similar to the result for MSK (see 
(5.2)), in the duration [kT, ( k  + 1)T], the SFSK signal in (5.3 1) can be written as 

where 

is determined by the staggered I- and Q-channel data, and 

nt 1 2nt 
- sin - $(t)  = p - 4 T 

which is the argument of the pulse-shaping hnction. The phase ak = 0 or ir, corre- 
sponding to Ik = 1 or -1. From (5.36) it is clear that the total phase in the duration 
is continuous. At the bit transition #(kT)  = F ,  the total excess phase is 

This satisfies the same condition for phase continuity of MSK (see (5.6)). Thus like 
MSK, the phase of the SFSK signal is continuous at any time. 

The frequency deviation is 

which is shown in Figure 5.19(b). 
Expression (5.36) shows that the SFSK can be generated by a frequency modu- 

lator with #( t )  as its phase deviation! Figure 5.20 is such a generator (modulator). 
Assuming the input is dkA sin 2.rrt/T, the output of the integrator is 

2nt dk AT 2nt 
dkAsin -dt = -[I - cos -1 

T 2n T 

AS we pointed out in the end of Section 5.1.2, having dk = - I k Q k  is equivalent to having 

In other words, if we want the SFSK signal generated by the frequency modulator to be equivalent to the 
signal generated by a quadrature modulator, dk must be differentially encoded using the original data 
sequence {ak). An SFSK signal so generated thus can be demodulated by the MSK-type quadrature 
demodulator. The outputs are directly Ik and Qk. If dk is the original data the SFSK signal is a 
variation of the FFSK, which can still be quadraturely demodulated (first O ( k T )  is found and from 
which the data can be recovered) [2]. 
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Keyed sine wave Frequency deviation 

Figure 5.20 SFSK modulator. 

This pulse is used as the control input to the VCO whose (radian) frequency deviation 
is proportional to the input voltage 

where Kv is the VCO sensitivity. 

dkAKvT 2nt 
[l - cos --I 

27t T 

The VCO output excess phase is 

- - dkAKvT T 27rt 
[t - - sin 

2n 2n 

Making AKV = n2/T2, the above becomes 

nt 1 - sin - 
2T 4 T 

Setting the VCO center frequency as f,, the VCO output is then 

The PSD of the modulated signal is determined by the pulse shape. The spectrum 
of the pulse shape can be analytically expressed as a sum of Bessel functions [ 1 I I. We 
only present the results here as shown in Figure 5.2 1. It can be seen that the sidelobes 
are considerably lower than those of MSK. 
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SFSK 

Figure 5.21 SFSK power spectral density. From [ I l l .  Copyright a 1976 IEEE. 
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The error performance is the same as MSK since the bit energy of the SFSK 
signal is the same as that of MSK. This can be easily verified as follows (using 
MathCad, for example) 

which is the same as (5.22) when A = 1. 
In general, modulator and demodulator are the same as those of MSK except that 

baseband weighting pulse (which can be replaced by a matched filter in the receiver) 
is the one in (5.13). As we have shown above, the modulator can be implemented as 
the simple frequency modulator in Figure 5.20. 

5.10 SIMON'S CLASS OF SYMBOL-SHAPING PULSES 

When MSK is viewed as a special case of FSK, (5.10) implies that the data sequence 
{dk} is first translated into a binary data waveform with rectangular shaped pulses 
and then frequency modulated onto the carrier. A generalization of (5.10) which 
allows for other than rectangular frequency shaping pulses is proposed by Simon in 
[i2] as 

where 

is the frequency shaping pulse which are nonzero only on the interval [0, TI. Note 
that since s ( t )  is specified over a 2T interval, the phase Qr; must remain constant 
over that interval and k is restricted to take on only-even or only-odd values. It is 
clear from (5.40) that the signal is of constant envelope. 

It was found that for even symmetrical carrier envelopes in the 1- and Q- chan- 
nels, as is true in the original MSK, the two pulses gl ( t )  and g2( t )  must be mirror 
images of each other around the point t = T/2,  (i.e., g z ( t )  = gl (T - t ) ,  0 5 t < T). 
Thus only one of them need be specified. Suppose gz( t )  is specified, then 
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and 

From this expression we can see that when dk- l  = dk, the frequency pulses in the 
kth and (k - 1)th intervals are symmetrical about t = kT. Consider interval [-T, TI, 
the frequency deviation is 

Excluding the data bits, the expressions of fd(t) in [-T, 01 and [O. T ]  are the same if 
g 2 ( t )  is even, or differ only by a negative sign if g 2 ( t )  is odd. In these cases we only 
need to consider interval (0, T] or [kT, (k + l)] in general. 

Further, since continuous rate of change of in-phase and quadrature envelopes 
leads to sharper spectral sidelobe roll-off, a constraint 

may be imposed on gl (t) and g2( t )  to ensure this desired property. 
For identical I- and Q-channel envelopes hrther constraints are needed: 

or in terms of gl (t): 

Substituting t  = T/2 into (5.46) and (5.47) we get 

Based on these constraints we need only specify g 2 ( t )  in the interval 0 5 t 5 T /2  
to determine gz (t) for T/2  5 t 5 T.  Similarly for gl (t). Assume 
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Figure 5.22 Relation between 92  (T - t )  and g2 ( t ) .  

From Figure 5.22 we can see that 

From (5.46) and (5.49) we can see that 

T-tg21 (t) r-t 7 0 5 t 5 T /2  
T - t g Z Z  ( t )  

- , T / 2  I t I T 

Comparing to (5.50) we obtain 
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This changes (5.49) into 

Thus the second part is found from the first part gzl (t) using the above expression. 
Under all the above constraints, we can express (5.4 1) in terms of g2 ( t )  , and ex- 

pand (5.4 1) into I- and Q-channel summation, then we can easily identify the symbol 
shaping pulses as 

for I-channel and 

for Q-channel [12,13], where p( t  - T) can be verified by use of (5.46). Note that 
when g 2 ( t )  = 1, p ( t )  falls back to that of the original MSK. 

Several pulse shapes of gz( t )  were examined in [12]. The first one is 

sin(2nt/T) 
- (27rtlT) o s t g  

g2(t )  = { 0, elsewhere 

which turns out to generate the SFSK. It can be easily verified that (5.55) satisfies 
(5.45) and (5.46). The corresponding frequency deviation pulse f d ( t )  and amplitude 
pulse are given earlier in (5.38) and (5.35) already. 

The second is of polynomial-type 

and it satisfies (5.45) and (5.46). The pulse in the interval [T/2, T ]  can be determined 
by the relation given in (5.52). This pulse function is odd when n is odd, and even 
when n is even. The corresponding Frequency deviation pulse f d ( t )  can be obtained 
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from (5.44) and is given by 

The amplitude pulse can be 
The third is 

found from (5.53) and (5.54). 

and it satisfies (5.45) and (5.46). The pulse shape in the interval [T/2,  T ]  can be 
determined by the relation given in (5.52). This pulse function is odd. The corre- 
sponding frequency deviation pulse fd(t) can be obtained from (5.44) and is given 
by 

The amplitude pulse can be found from (5.53) and (5.54). 
Figure 5.23 shows these frequency pulses, corresponding frequency deviation 

pulses, and amplitude pulse shapes (assuming do = I), where n = 1 for the second 
type. The frequency deviation pulse for the second type is a triangle and that for the 
third type is a half-sine function. The amplitude pulses are quite similar despite that 
the frequency deviation pulses are quite different. 

The spectra (in the form of fractional out-of-band power P&) of these amplitude 
pulses are numerically computed in [ I  21 and the results are shown in Figure 5.24. The 
results show that the n =. 1 case polynomial-type pulse and the third type pulse have 
similar sidelobe roll-offs with the latter being slightly better. They roll off faster 
than SFSK within a bandwidth of approximately BT = 2.0, but slower thereafter. 
The roll-offs for higher values of n are significantly worse than SFSK. The n = 1 
case polynomial-type pulse has spectral properties which are in a sense a compromise 
between those of MSK and SFSK. However, it has the practical advantage of offering 
easy transmitter implementation, that is, the transmitter oscillator is linearly swept 
in frequency. 

One final comment is that when the receiver matched filters are matched over 
the 2T decision interval to the envelopes p ( t )  and p(t  - T) of (5.53) and (5.54), the 
error performance is the same as that of MSK since the bit energy of the signals using 
the pulse shapes given in (5.55) to (5.57) is the same as that of MSK (checked using 
Mathcad). 
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0 0.5 1 
t / T  

(a) Frequency pulses (b) Frequency deviation pulses 

(c) Amplitude pulses 

Legend 

I Fisrt type (SFSK) 
I1 Second type (polynomail, n= 1 ) 
111 Third type 

Figure 5.23 Simon's frequency pulses (a), frequency deviation pulses (b), and amplitude pulses (c). 
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Figure 5.24 Fractional out-of-band behavior for several types of modulating pulses. From [ 121. Copy- 

right (CJ 1976 IEEE. 
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5.11 RABZEL AND PASUPATHY'S SYMBOL-SHAPING PULSES 

It is well known that if pulse p ( t )  has (N - 1) continuous derivatives which are 
equal to zero at the leading and trailing edges of the pulse, then its Fourier transform 
decays asymptotically as f - ( N + l )  and the power spectrum as f -(2N+2) []dl. (Only 
positive f need be considered since spectra are symmetrical about f = 0). Equivalent 
conditions on g( t ) ,  which is denoted as gz( t )  in ( 5 . 5 3 )  and (5.54), are derived in [13] 
as 

For an MSK-type signal, the above conditions are equivalent to 

A general class of pulses was proposed by Rabzel and Pasupathy 1131 as 

where 

(22 - 2)! 
Ki = 

22i-2 [(i - 1)!]2(2i - I) 

and a = 1,2,3,  . . . . The Kis are the coefficients of the series expansion of the 
inverse sine function, that is, 

The first 10 Kis are 1, 0.167, 0.075, 0.045, 0.03, 0.022, 0.017, 0.014, 0.012, and 
0.0097. 

Note that an MSK-type signal using g ( t ,  a, M) has an constant envelope since 
the signal is given in (5.40). 

For finite M ,  it was shown in 1131 that g ( t ,  a, M) satisfies (5.46) and (5.58) with 
N = 2M + 1. Thus the power spectrum of an MSK-type signal employing this class 
of frequency shaping pulses will decay asymptotically as f - (4M+4).  Some shaping 
pulses previously considered are special cases of (5.59). Specifically, 
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defines MSK, with an asymptotic decay rate o f f  -4  and 

generates the SFSK with an asymptotic decay rate off -8. The shaping pulse defined 
in (5.57), which is not in the class, has an asymptotic decay rate of f  -6. These signals 
should be contrasted with the OQPSK signal which has an asymptotic decay rate of 
f - 2  

However, when A4 = oo, the pulse is 

which has a discontinuous first derivative (just like MSK) and hence its power spec- 
trum decays as f -*. 

The plots of this class of frequency-shaping pulses and in-phase symbol-shaping 
pulses are given in Figures 5.25 and 5.26. The power spectra (in the form of out-of- 
band power Pob) of corresponding MSK-type signals are given in Figure 5.27. For 
fixed a = 1, the higher the values of M (except for M = oo), the smoother the 
pulse shapes and the lower the out-of-band power. The Pob(rnin) in the figure refers 
to a lower bound on Pob as calculated by Prabhu [16], using the optimum prolate 
spheroidal wave function for p ( t ) .  The effect of a were also examined for fixed 
M = 1 case as shown in Figure 5.28. It was found that for large BT values the 
Pob is smaller for a = 1, and for small BT values the Pob is smaller for larger a. 
However, using MSK at the small BT ranges is a better alternative since its Pob is 
indistinguishable from that of SFSK but its system complexity is less. 

The generation of the MSK-type signaling using G(t,  a ,  M )  is a straightforward 
extension of the scheme shown in Figure 5.20. The generator will use the frequency 
deviation function as an input to a VCO whose outputs are the I- and Q-channel 
symbol pulses p(t ) and p ( t  - T) . The generator is shown in Figure 5.29. The structure 
is based on the frequency deviation function. 

The symbol shaping pulse for OQPSK is p ( t )  = 1,0 5 t 5 T, and 0 elsewhere, which is 
discontinuous. Its integration (or - l th  derivative) is continuous. Thus N = 0, its power spectrum 
decays with an asymptotic decay rate o f  1 f l - ( 2 N + 2 )  = ) f 
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Figure 5.25 Rabzel and Pasupathy's symbol-shaping pulses. From [13]. Copyright @ 1978 IEEE. 

for which g ( t )  = G(t,  a, M) yields 

where 

The first four Bis are 1 ,  1/2,3/8, and 5/16. Note that the output of the VCO in Figure 
5.20 is directly the modulated signal since the input is a keyed sine signal, whereas the 
outputs of the VCO in Figure 5.29 are baseband symbol pulses. Keying is performed 
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Figure 5.26 In-phase symbol weightings for g ( t )  = G(t ,  1, &I). From [ I  31. Copyright @ 1978 IEEE. 

in the modulator. 
Again the optimum demodulator is the same as that of MSK with the receiver 

matched filters matched over the 2T decision interval to the I- and Q-channel shaping 
pulses. The error performance is also the same since the bit energy of the signals 
using the pulse shapes given in (5.59) is the same as that of MSK (checked using 
Mathcad). 

5.12 BAZIN'S CLASS OF SYMBOL-SHAPING PULSES 

A class of symbol-shaping pulses was proposed by Bazin [IS] which includes the 
class of (5.59) as a subclass. Hence SFSK is also a element of the class. This class 
is defined to have up to Nth continuous derivatives so that its power spectrum de- 
cays asymptotically as f -2N-4 and to produce a constant envelope of the MSK-type 
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Figure 5.27 Fractional out-of-band powers for G(t ,  1, hf). From [13]. Copyright @ 1978 IEEE. 
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Figure 5.28 Effect of a in G(t, a, 1) on the fractional out-of-band power. From [13]. Copyright @ 

1978 IEEE. 
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Figure 5.29 Generation of amplitude pulses. From [13]. Copyright (FJ 1978 IEEE. 

which generates: 

The Ak coefficients are solutions of the linear system: 

p ( t )  = cos 

Some Ak coefficients may be zero. The magnitude of the vector sum of the in- 
phase and quadrature pulse envelope is invariant since p ( t )  = p ( - t ) ,  and p2( t )  + 
p2(t - T )  = 1. SFSK is apparently an element of this class with k = 1 and N = 2 
and Al = 0.25, hence the power spectrum asymptotically decays as f Another 
example of this class, called double SFSK (DSFSK) is defined by choosing N' = 2 
and N = 4. The pulse is 

nt 1 2nt 1 
- sin - + - sin - 

2T 3 T 24 T 

N' nt 2xk t  - - C A k  sin - 
T 2T 

k= 1 

Its power spectrum decays asymptotically as f -I2. It is interesting to compare this 
pulse to one of Rabzel's pulses which is close to it. By choosing A1 = 2 and a = 1 in 

N 
and N' 2 - 

2 
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Figure 5.30 Bazin's pulse. 

(5.59), Rabzel's frequency-shaping pulse leads to a symbol-shaping pulse as follows 

7rt 9 27rt 1 
- sin - + - sin - 

2T 32 T 96 T 

The pulses are shown in Figure 5.30. 
The comparison of power spectral densities in Figure 5.3 1 shows that the spec- 

trum of DSFSK decays, on the average as f -I2 beyond f = 4.75/T, and coincides 
with the SFSK spectrum near f = 4/T and departs from the latter from f = 1/T 
up to f = 3.75/T where the power density is larger for DSFSK than for SFSK. The 
difference is maximum at f = 3/T and equal to about 20 dB. The power spectrum 
of (5.61) is larger than SFSK and close to DSFSK before f = 3.75/T, and it ap- 
proaches the SFSK spectrum beyond f = 4.5/T, but the effect of the asymptotic 
slope (as f -I2) does not happen before f = 6 / T .  

The error performance of above schemes is the same as MSK as long as the 
receiver uses matched filters which are matched to 1- and Q-channel symbol-shaping 
pulses. 

5.13 MSK-TYPE SIGNAL'S SPECTRAL MAIN LOBE 

While above shaping techniques can reduce MSK spectral sidelobes considerably, 
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I A I 1 1 

Figure 5.3 1 Power spectra. From [15]. Copyright @ 1979 IEEE. 
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none of them can reduce the main lobe of MSK spectrum. A study of all these pro- 
posed symbol-shaping pulses p ( t )  revealed the following common points: 1)  All the 
proposed p( t  ) are monotonic symmetrical pulses of finite duration [-T, TI, which 
is defined as follows: p ( t )  = p ( - t ) ,  p r ( t )  5 0 for 0 < t < T. 2) The spectral main 
lobes of all of these p ( t )  are always wider than that of a square pulse having the same 
time duration. In fact, it has been shown that an MSK-type signal generated by using 
a monotonic symmetrical pulse of finite duration [-T, T] will always have a spec- 
tral main lobe wider that of a conventional PSK signal generated by using an polar 
NRZ pulse of the same duration [17]. 

5.14 SUMMARY 

In this chapter we first described the original MSK scheme which is implemented 
in a parallel fashion with I- and Q-channels in modulator and demodulator. It was 
described as a sinusoidally weighted OQPSK and as a special case of continuous 
phase modulation. Its properties of constant envelope and continuous phase were 
proved. Its power spectral density was derived and compared with those of BPSK, 
QPSK, and OQPSK. The comparison was in favor of MSK in terms of sidelobe roll- 
off speed. Then the MSK modulator, demodulator, and synchronization circuit were 
described. The error probability expression of MSK was derived, which turns out 
to be the same as that of BPSK, QPSK, and OQPSK. Next the serial MSK, which 
is suitable for high-speed transmission, was described in detail, including its princi- 
ple, modulator, demodulator, conversion and matched filters, and synchronization. 
Finally, many MSK-type modulation schemes, which generally have better spectral 
sidelobe roll-offs or better error performances, but more complexity, were discussed. 

Gaussian MSK (GMSK) is another spectral compact MSK-type scheme which 
passes the polar NRZ data waveform through a Gaussian filter before sending it to an 
FM modulator (181. It also suffers loss in error performance depending on the filter 
bandwidth. This leads to a trade-off between error performance and bandwidth. It 
was shown that 0.7 dB loss for a filter bandwidth B = 0.2517' is a good trade-off 
for mobile radio channels [ lg ] .  It has been chosen as the modulation scheme for 
European mobile GSM system. It will be discussed in Chapter 6 in the context of 
continuous phase modulation (CPM). 

Efforts to improve the MSK error performance were also reported [19,20]. Im- 
provements are achieved by extending the observation interval from 27' for MSK to 
longer intervals. The improvements in Eb/& are on the order of I dB for 3T and 
1.2 dB for 5T for an optimum value of A f = (f+ - f-) = 0.7151T. For obser- 
vation intervals longer than 5T, improvements are minot The complexity increase 
does not seem to favor these schemes over the simple yet efficient MSK. 
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We will revisit MSK and MSK-type schemes in the next chapter in the context 
of continuous phase modulation. In particular, one important MSK-type scheme, the 
GMSK, will be discussed in detail due to its application in the GSM system. 
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Chapter 6 

Continuous Phase Modulation 

From Chapter 5 we have learned that MSK signal has continuous phase. In fact 
MSK is just a special case of a large class of constant amplitude modulation schemes 
called continuous phase modulation (CPM). This class of modulation is jointly power 
and bandwidth efficient. With proper choice of pulse shapes and other parameters, 
CPM schemes may achieve higher bandwidth efficiency than QPSK and higher or- 
der MPSK schemes. Even though high-order QAM may outperform MPSK in terms 
of power or bandwidth efficiency (see Section 8.7 for comparison between QAM and 
MPSK), QAM's nonconstant envelope may hinder its use in channels with nonlin- 
ear power amplifiers. Therefore CPM has been getting a lot of attention in satellite 
channels and other channels. Some of the CPM schemes have been used in practi- 
cal communication systems. For example, MSK has been used in NASA's Advanced 
Communication Technology Satellite (ACTS) system, GMSK (Gaussian MSK) has 
been used in the U.S. cellular digital packet data (CDPD) system and the European 
global system for mobile (GSM) system. 

Significant contributions to CPM schemes, including signal design, spectral 
analysis, and error performance analysis were made by C-E. Sundberg, T. Aulin, A. 
Svensson and J. Anderson, among other authors (1-91. Excellent treatment of CPM 
up to 1986 can be found in the book by J. Anderson, T. Aulin, and C-E. Sundberg 
[g]  or the article by C-E. Sundberg 11 1. In this chapter we will cover all basic aspects 
of CPM and present research results up to date. The treatment here is limited to 
the AWGN channel as we did for previous chapters. The multiple index continuous 
phase modulation (MHPM) will be covered in the next chapter. 

We define CPM signal and study its phase properties in Section 6.1. Its power 
spectral density is studied in Section 6.2. The error probability of CPM schemes is 
determined by the Euclidean distances between signals. In Section 6.3, we derive 
the distance expression for CPM signals and compare distances for different CPM 
schemes. CPM modulators and demodulators are presented in Sections 6.4 and 6.5, 
respectively. Section 6.6 is for synchronization (carrier and symbol) of CPM signals. 
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Since it is currently used in practical systems, a comprehensive treatment on GMSK 
is given in Section 6.7. Section 6.8 summarizes this chapter. 

6.1 DESCRIPTION OF CPM 

CPM signal is defined by 

The signal amplitude is constant. Unlike signals of previously defined modulation 
schemes such as FSK and PSK, where signals are usually defined on a symbol in- 
terval, this signal is defined on the entire time axis. This is due to the continuous, 
time-varying phase @(t , a), which usually is influenced by more than one symbol. 
The transmitted M-ary symbol sequence a = {ak} is imbedded in the excess phase 

with 

The M-ary data a k  may take any of the M values: f 1, k3, . . . , f (M - 1) ,where hl  
usually is a power of 2. The phase is proportional to the parameter h which is called 
the modulution index. ' Phase function q( t ) ,  together with modulation index h and 
input symbols ak, determine how the phase changes with time. The derivative of 
q(t ) is function g(t ) , which is thefiquency shape pulse. The function g ( t )  usually 
has a smooth pulse shape over a finite time interval 0 5 t 5 LT,  and is zero outside. 
When L 5 1, we have a full-response pulse shape since the entire pulse is in a symbol 
time T. When L > 1, we have a partial-response pulse shape since only part of the 
pulse is in a symbol time T. 

The modulation index h can be any real number in principle. However, for 
development of practical maximum likelihood CPM detectors, h should be chosen 
as a rational number. Rational h makes the number of the phase states finite, thus 
maximum likelihood detectors using the Viterbi algorithm can be used. The Viterbi 
algorithm will be discussed when CPM demodulation is addressed. 

If the modulation index h varies cyclically from symbol to symbol, we  have a modulation scheme 
called multi-h phase modulation (MHPM). Due to its complexity and importance, we will study MHPM 
in Chapter 7. 
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We have stated that the phase @(t, a) is continuous without proof. We will prove 
its continuousness in Section 6.1.2. 

6.1.1 Various Modulating Pulse Shapes 

By choosing different pulses g ( t )  and varying the modulation index h and size of 
symbol alphabet M, a great variety of CPM schemes can be obtained. Some of the 
popular pulse shapes are listed in the following [I]. All pulse functions in the list 
have been normalized such that 

This makes the maximum phase change of the signal to be (Ai - 1) hn for the period 
of d t ) .  

6.1.1.1 Rectangular (LREC), CPFSK, and MSK 

LREC is the rectangular pulse with a length of L symbols. For example, 3REC has 
L = 3. LREC's g ( t )  is defined by 

otherwise 

A special case is I R K ,  which is most often referred to as CPFSK (continuous 
phase frequency shift keying). Further, if M = 2 and h = 112, l REC becomes 
MSK. Substituting (6.4) with L = 1 into (6.3), we have 

Then substituting this into (6.2) we have in the interval [kT, ( k  + 1)T] 
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where 
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Thus 

This is the expression of the CPFSK signal which we have mentioned in Chapter 5 
(see Section 5.1.2 ). With h = 0.5? the above expression becomes 

which is the MSK signal if ak is binary (see Section 5.1.2). 
Another special case is binary ZREC, also called duobinary MSK (DMSK). Thus 

for DMSK 

0, otherwise 

6.1.1.2 Raised Cosine (LRC) 

LRC is the raised cosine with a length of L symbols. For example, 3RC has L = 3. 
LRC's g ( t )  is defined by 

[I - cos (%)I , 0 < t 5 LT 
otherwise 

6.1.1.3 Spectrally Raised Cosine (LSRC) 

LSRC is the spectrally raised cosine with length L. For example, 2SRC has L = 2. 
LSRC's g ( t )  is defined by 

1 sin (g) cos (0%) 
g ( t )  = - LT 

egg 
1 - (g)2'  
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6.1.1.4 Tamed Frequency Modulation (TFM) 

TFM is the tamed frequency modulation. TFM's g ( t )  is defined by 

6.1.1.5 Gaussian MSK (GMSK) 

GMSK is the Gaussian minimum shift keying. GMSK's g ( t )  is defined by 

Due to the importance of GMSK, we will describe it in more detail in Section 6.7. 
Figure 6.1 shows the g ( t )  pulse shapes and q ( t )  pulse shapes defined in the 

above list. The time axis is normalized to T. The familiar rectangular pulse is de- 
fined on [O, LT] and its phase hnction is linear, reaching the maximum (0.5) at the 
end of the period. The raised-cosine pulse is defined in [0, LT], the corresponding 
phase function q ( t )  is a nonlinear yet smooth curve in (0, LT] . The q ( t )  reaches its 
maximum at the end of its period. The tamed frequency modulation pulse is defined 
in [-m, m], however its major energy is within 1-25!', +2T] . Its phase function 
q ( t )  changes smoothly in the interval and reaches the maximum at about 2T. The 
spectrally raised cosine pulse has similar properties of the TFM. However, the phase 
function exhibits small oscillation around 0 and 0.5. The GMSK g ( t )  is also defined 
in [-GO, GO], but the main energy is in [-T, +TI (for BbT = 0.25). The phase func- 
tion changes smoothly in the same interval, reaching its maximum at T.  Since the 
length of frequency pulse fbnctions of TFM, SRC, and GMSK is infinite, they must 
be truncated in time-domain implementation. 

As will be seen shortly, g ( t )  and h can be chosen to enable the CPM schemes to 
outperform MSK in terms of power efficiency and bandwidth efficiency. The reason 
that this can happen is that memory has been introduced into the CPM signal by 
means of the continuous phase. Further memory can be built into the CPM signal by 
choosing a partial response g ( t )  with L > 1. 
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0 1 2 3 0 0.5 1 
t (a) lREC t 

t (e) GMSK (BbT=0.25) t 

Figure 6.1 Freauencv ~ u l s e  sha~es for CPM. 
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6.1.2 Phase and State of the CPM Signal 

Since the information symbols are imbedded in the phase of the CPM signal, demod- 
ulation will be solely based on its phase. It is therefore very important that the phase 
behavior of CPM signals is hlly understood. 

First we examine an example shown in Figure 6.2 where phase @(t,  a) of binary 
3RC with h = 213 is shown for a particular data sequence. The unit of the phase is 
radian. We assume that the initial phase is zero, that is cP(0, a) = 0. We have plotted 
the weighted q( t  - kT) for the first four data symbols and omitted the rest. The total 
phase @(t ,  a) (modulo 27~)  for the sequence is shown on the bottom of the figure. 

The continuousness of the phase @(t, a) can be easily proved with the help of 
Figure 6.2. Since g ( t )  is a smooth function, its integral q ( t )  is also a smooth function. 
The phase @(t, a) is a weighted sum of shifted versions of q( t ) .  Along the time axis, 
as t increases, a new weighted q(t  - kT) is added in at every symbol boundary. The 
value of @(t, a) will not change abruptly since q ( t )  always starts from 0. Therefore 
the phase @(t, a) is continuous, even at the symbol boundaries. 

From Figure 6.2 we can see that q( t  - kT) reaches its maximum at t = (k + L)T 
and stays at the maximum for the rest of the time. Figure 6.2 is for 3RC which has a 
finite duration L = 3. For pulse shapes with infinite duration such as LSRC, TFM, 
and GMSK, the q(t - kT) also reaches its maximum at t = (k  + L)T, approximately 
(see Figure 6. I(c-e)). These maximum values are accumulated along the time axis. 
Thus we can separate the excess phase @(t, a) into two parts as follows. 

The excess phase of a CPM signal during interval kT < t < (k + l)T can be 
written as 

where 

is the instant phase, which represents the changing part of the total excess phase in 
[kT, (k  + l)T], and 

Ok = I hn ai ( (mod 2 4  

is the cumuZatephase, which represents the constant part of the total excess phase in 



Digital Modulation Techniques 

Figure 6.2 Phase @ ( t ,  a) of binary 3RC with h = 2/3. 
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[kT, (k + l)T], and is equal to the sum of the maximum phase changes contributed 
by each symbol, accumulated along the time axis up to the (k - L)th symbol interval. 
It can be conveniently computed recursively as 

The instant phase 0 ( t ,  ak) is determined by the data symbol ak and previous 
L - 1 symbols. For example, if L = 1, then 

which is a changing phase proportional to the current data and the phase function, 
where q(t) is nonzero in (0, T) and zero otherwise. If  L = 2, then 

where q ( t )  is nonzero in (0,ZT) and zero otherwise. B ( t ,  ak) is a changing phase 
proportional to the weighted sum of the current phase function and the previous phase 
function. The weighting factors are the current data symbol and the previous data 
symbol, respectively. 

The cumulate phase Bk is the accumulated phase due to the data up to t = (k  - 
L)T, not including the phase accumulated by the carrier, and also not including the 
phase accumulated in the instant phase due to the previous L - 1 symbols. Therefore 
it is in general not the initial phase at time kT (at first glance, it seems to be the initial 
phase). The initial phase at t = kT is 2x fckT + Bk + B(kT, ak). However, if L = 1, 
then @(kT, ak) = 0, and in addition iff ,  is an integer multiple of symbol rate, Bk 
would become the initial phase of the kth symbol interval. 

If h is rational, that is, h = 2 q / p  where q  and p have no common factors, the 
number of distinct values of Ok is p. 

Proof: Since h = 2q/p, 

k - L  2n oFc = - 2q* C ai = multiple of - 
p i=-m P 

Thus the number of states is 

For example, h = 112 = 214 for MSK, its number of phase states is four (see Figure 
5.3). If h is a real number, the number of distinct values of Bk is infinite. 

We define a state of a CPM signal at t = kT as the vector 
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which consists of the value of the cumulate phase Bk and the previous L - 1 symbols. 
For rational h, since the number of distinct values of Ok is p, the number of states 
is at most p M L - l .  However, for real h,  the number of states is infinite. Each state 
corresponds to a specific fbnction form of the excess phase @(t! a). 

Using 3 RC with h = 2/3 and binary symbols ( M  = 2) as an example, we have 

where 

The number of Ok is 3. Thus the binary 3RC has a total of 12 states. The recursive 
expression for Bk is 

The information bearing phase @(t,  a) for the binary 3RC is 

where 

q( t ,  = it& [I c o r  (g)] df 

which is nonzero in (0: 3T) and zero otherwise. At t = kT, 

where g(0) = 0, q(T) = 0.098, and q(2T)  = 0.402. Thus 

Table 6.1 lists the 12 values of @ ( k T ,  a )  corresponding to the 12 states. The fourth 
column contains the direct results from (6.17). The last column contains the results 
converted into [O,2n]. These phase values can also be converted into 1-27r, 01, with 
the same array of absolute values. From the last column we can see that in fact there 
are only nine distinct values. Some of the phase values are produced by more than 
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State 

1 
2 
3 
4 

I 

5 
i 

6 
7 

ak-2 @(kT,a) W T ,  a) 
direct results from (6.17) converted into 10, 2?r] 

-1 -2a $7r 
, 

+1 y - 1';,2a 
6 

-1 -- y2 , - y 7r 

+l Zn ?7r 

Table 6.1 3RC states and phase values. 

one state. $s and $ 7 ~  are repeated once, and 0 and 2n are the same. In this sense, 
these states are equivalent. That is, states 1 and 8 ,4  and 9, 5 and 12 are equivalent. 

6.1.3 Phase P e e  and Ikellis, State 'Ik-ellis 

For an arbitrary data sequence, the phases of the CPM signals will follow a unique 
continuous phase trajectory (or path). The collection of all possible phase paths forms 
a phase tree. When h is rational the number of phase states is finite and the phase 
tree can be collapsed into a trellis. 

In Chapter 5 we have seen the phase tree and trellis of MSK, which is a 1 REC 
with M = 2 and h = 112 (see Figures 5.2 and 5.3). Here we examine an additional 
example with nonlinear yet smooth phase function q ( t ) :  binary 3RC with h = 213. 
Its phase tree is drawn in Figure 6.3 using (6.16). We assume that the initial phase 
is zero, that is, @(O, a) = 0. We also assume that the two symbols before t = 0 
are +l. The f 1 on a branch is the data symbol that, together with the previous two 
symbols and the phase Bk, produces the phase trajectory (see (6.16)). I t  can be easily 
examined that all the phase values at t = kT in the phase tree are included in Table 
6.1. 

As time increases, the tree will grow bigger. However, by using a modulo-2.rr 
operation, this phase tree can be collapsed into a trellis. Figure 6.4 shows the trellis. 
The trellis is drawn by using a modulo 2n operation first, then converting those 
phases in [0, -2a] into [O, 27r] by simply adding 2a to the values. The trellis becomes 
hlly developed only after t = 4T. This is because it takes 2T to have all possible 
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Figure 6.3 Phase tree of binary 3RC with h = 2/3. The phase starts with value zero at t = 0. After: 

PI. 

Ok (see (6.14)) and another 22' to have all possible instant phase values (see (6.16)). 
Now we examine the phase values at t = 4T or 5T. From the top to the bottom, those 
values correspond to states 12 (or 5) ,  10, 3, 1 (or 8), 6, 11,4 (or 9), 2, 7, and 5 (or 
12) in Table 6.1. At each node, there are two branches coming in and two branches 
going out except for those double-state nodes where four branches are coming in and 
going out. Each branch represents an input symbol (+1 or -1). Each branch is the 
phase trajectory from the previous node to the current node. 

The phase tree and the phase trellis are very usefbl for understanding the phase 
behavior of the CPM signals. However, for demodulating CPM signals, a state tmllis 
instead of phase trellis is more convenient. Figure 6.5 shows the state trellis of the 
3RC example. The trellis is drawn using (6.13), (6.14), and (6.15). In the figure, 
each state is represented by a node, even for those states that produce the same phase 
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Figure 6.4 Phase trellis of binary 3RC with h = 2/3. The phase starts with value zero at t = 0. 

values. In this way there are always two branches coming in and going out at a state. 
In general, there are always M branches in and out at a state for M-ary symbols. In 
addition, in the state trellis, the lines connecting states are not trajectories of the signal 
phases. They are there simply to show the transitions from one state to the other. 
Thus a state trellis is almost the same as a phase trellis except that the transition 
branches are not phase trajectories and the nodes are labeled by states instead of 
phases. However, we know that states can be mapped into phases even though the 
mapping may not be completely one-to-one (see Figures 6.4 and 6.5). 

For full-response CPM, the state vector is just Ok, thus the nodes of the state 
trellis are identical to the nodes of the phase trellis, but the branches are still differ- 
ent. For linear full-response CPM (CPFSK), even the branches of the phase trellis 
are straight lines, thus the appearance of the state trellis and the phase trellis are com- 
pletely the same. 
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Another interesting fact is that the frequency pulse shape g ( t )  does not affect the 
structure of the trellis as long as the convention JYw g(t)dt  = 112 (or other constant) 
is observed. This is because the states are defined by (&, a k - 1 ,  a,k-a,  . .. , a k - ~ +  I ) ,  

where data have nothing to do with g ( t ) ,  and Bk also is independent of g ( t )  provided 
00 s- w g( t )d t  = 112 (or other constant). This fact makes a trellis applicable to many 

schemes with different frequency pulse shapes as long as their L and h are the same. 
If h is irrational, @(t,  a) will have an infinite number of possible values, de- 

pending on the current symbol and all previous symbols. The phase tree still exists, 
but the number of branches at each node for a specific input symbol will no longer be 
A l .  Rather it grows exponentially with the depth of the tree ( M " ,  N is the depth). 
This tree cannot be collapsed into a trellis. 

6.2 POWER SPECTRAL DENSITY 

The methods of calculating power spectral densities of CPM signals, or other digi- 
tally modulated signals, for that matter, basically fall into three classes: direct method 
[lo], Markov method [HI,  and correlation method [12]. Computer simulation can also 
be used. Finally, measuring is always a method of finding CPM spectra, and is also 
the ultimate verification of the calculated spectra. 

In the direct method one takes the Fourier transform SN ( f ,  a,&) of a truncated 
deterministic CPM signal ~ , ~ ( t )  = slv ( t ,  a,#,) and then forms the average over data 
a and initial phase +, which is distributed uniformly over (0: 2a). That is 

where N is an integer. We have used this method to find out the PSD formulas of the 
baseband modulations in Appendix A. The results turned out to be quite simple. For 
CPM, however, the resultant equations are often complicated and two-dimensional 
numerical integrations are required. 

In the Markov method, the random data are modeled as a Markov process char- 
acterized by a transition matrix. Then the autocorrelation function can be expressed 
in terms of this transition matrix and the matrix of the correlation between the basic 
baseband pulses. The Fourier transform of the autocorrelation fbnction is the power 
spectral density of the modulated signal. We have used this method in Chapter 2 for 
finding the PSDs of B i 4 - M  and the delay modulation line codes. 

In the correlation method, the correlation fbnction of a CPM signal is calculated 
first, then one takes the Fourier transform of the correlation function to get the PSD. 
The correlation is formed by first taking the average over data a of the product of 
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Transition for ak = 1 - - - -  Transition for ak = - 1 

Figure 6.5 State trellis of binary 3RC with h = 2/3. After: [9J 
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the signal's complex envelopes F(t + T ,  a) and T(t  a): 

R-,(t + 7 ,  t )  = E{g(t + r7, a)Z(t, a ) )  

and then taking the time average over a period of T :  

A fast, relatively simple, numerical method first appeared in I131 it also can be 
found in (91 and (141. This method is a type of correlation method. The derivation of 
the method is presented in Appendix A together with methods of computing PSDs of 
other digitally modulated signals. Here we list the steps and formulas of the numeri- 
cal calculation resulting from the two steps in (6.18) and (6.19). All PSD expressions 
are for CPM signals with a unit amplitude. For CPM signals with an amplitude A? 
their PSDs just need to be scaled up by A2. 

6.2.1 Steps for Calculating PSDs for General CPM Signals 

1. Calculate the autocorrelation function Rz (7)  over the interval [0, (L + 1)T]. 
Note that the time difference 7 is written in the form T = E+mT with 0 5 ( < T 
and rn = 0,1 ,2 ,  ... 

- - y T E  { M-1 P, exp{ jZrhn[q( t  + ( - (k - m)T) 
T 

k = l - L  n=-(M-1) 
n odd 

-q(t  - W W )  
(6.20) 

where Pn is the a priori probability of the nth symbol. The weighted (by 
P, ) sum is the result of averaging over M symbols. The product represents 
correlating over L +m symbol periods. Finally, the integration is the result of 
averaging over the time for a symbol period. 

2. Calculate 

n=-(Ad-1) 
n odd 
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The coefficient C, will be used in the next step of computing. If h is not an 
integer, then )C, 1 < 1, the PSD is purely continuous. If h is an integer, then 
IC,I = 1, the PSD contains a continuous part as well as a discrete part (spectral 
lines). 

3. IF 1 C, I < 1, which is the common case when h is not an integer, usually rational, 
calculate the PSD using 

The PSD is continuous. A special case is when the data symbols are equally 
likely, which is also the most common case, then P, = l/M, for n = 
4117 413, . . . , * (M - 1). For this case, the sum of the exponential functions in 
(6.20) becomes real-valued due to symmetry of the data symbols, we have 

[TiT1 1 sin 2ahM[q(t + 7 - kT) - q( t  - kT)] dt 
(6,23) Rz(T) = Jd n , sin2rh[q(t + r - kT) - p(t - kT)] 

k=l-L 

and the PSD is 

1 - C, cos 2n f T 
&(T) cos 27r f T ~ T  

and (6.2 1) becomes 

1 sin Mnh 
= M s i n ~ h  

4. IF IC,I = l7 which is the rare case when h is an integer, the autocorrelation 
function contains an aperiodic part R,,, ( T )  and a periodical part Rdis (7). 
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As a result, the PSD contains a continuous part and a discrete part. 

where Fdis( f )  is the discrete PSD which is the Fourier series coefficients of 
Rdis (7). It is shown in Appendix A that when h is even the period of Rdis (T) is 
T ,  and the discrete frequency components appear at f = ~tlc/T,  k = 0,1? 2, . . . . 
When h is odd, Rdis (7) is a periodic, odd half-wave symmetrical function 
with a period of 2T. Its spectrum would only have odd harmonics at f = 
f (2k + 1)/2T. k = 0,1,2, ... 115, p.1031. The property that a CPM signal 
with integer index has discrete frequency components can be used to recover 
the carrier and symbol timing in CPM receivers. 

6.2.2 Effects of Pulse Shape, Modulation Index, and A Priori Distribution 

Many numerical results are given in [ I ,  7-91. The results include the PSDs for CPM 
schemes with (1)  different frequency pulses ( g ( t ) ) ,  (2) different modulation indexes 
(h,), (3) different a priori distributions (P,). The results are often shown in compar- 
ison with the PSD of MSK since MSK is a bandwidth-efficient modulation scheme 
that appeared earlier than general CPM schemes. Here we quote some of the impor- 
tant results. 

First we want to show the effect of the shape of g( t ) .  Figure 6.6 shows PSDs 
of some binary CPM schemes with different g ( t ) ,  with a fixed index h = 112, and 
a uniform a priori distribution. GMSK4 and 3SRC6 mean that the g ( t )  is truncated 
symmetrically to a length of 4 and 6 symbols, respectively. All four CPM schemes 
have better PSDs than MSK in that their spectra fall faster with frequency. The PSD 
of 3RC, GMSK4 with BbT = 0.25, and 3SRC6 with ,O = 0.8 are very similar. This 
is no surprise since their g( t ) s  are similar (see Figure 6.1). Figure 6.7 shows PSDs 
for some quaternary CPM schemes for a fixed index h = 113. It is clear that 3RC is 
better than 2RC, which in turn is better than 1 REC and MSK. The spectrum of TFM 
is not shown, however, it is reported that TFM has a PSD similar to binary 3.7RC or 
3.7SRC or GMSK with BbT = 0.2 [l]. The conclusion we can draw from Figures 6.6 
and 6.7 is that the effect of pulse shape on PSDs is significant, a longer and smoother 
pulse g ( t )  yields narrower power spectra for fixed h and M .  

Next, the effect of modulation index difference is demonstrated in Figure 6.8 
using binary 4RC as an example. It is seen that lower h values yield lower spectral 
side-lobes as we would expect, since h controls the frequency deviation from the 
carrier frequency. The effect of h on PSD is significant. However, as we will see 
shortly, h also affects bit error probability. So the choice of h is not simply based on 
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Figure 6.6 PSDs for some binary CPM schemes with h = 1/2, in comparison with MSK. From [l]. 

Copyright @ 1986 IEEE. 

PSD properties. 
Finally, the effect of different a priori distributions (P,) can be seen from Figure 

6.9 where B1, B2, and B3 are three a priori distributions (PDFs) defined as follows 

From the figure we can see that the PSD of the symmetrical PDF is also symmetrical 
about f T = 0. The PSDs of the asymmetrical PDFs are also asymmetrical. However, 
all of them are very similar even for the very skewed distribution B3. Thus the 
conclusion is that the a priori distributions (P,) do not affect the PDFs significantly. 

6.2.3 PSD of CPFSK 

For M-ary 1 REC (CPFSK), the PSD has a closed form expression p.101. The expres- 
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Figure 6.7 PSDs for some quaternary CPM schemes with h = 1 /3, in comparison with MSK. From 

(1)  Copyright @ 1986 IEEE. 

sion is 

where A is the signal amplitude. Other parameters are defined as 

1 sin bfn h 
= M sinzh 

This group of expressions has been presented in Chapter 3 in the context of M-ary 
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Figure 6.8 PSDs for binary 4RC for different h values. From [83. Copyright @ 198 1 IEEE. 

F S K . ~  PSD plots have also been given in Chapter 3 for A1 = 2,4 ,  and 8. 

6.3 MLSD FOR CPM AND ERROR PROBABILITY 

Unlike classic FSK and PSK modulation schemes, CPM signals have memory. The 
signal in one symbol duration is determined by the current input symbol and the 
state. The state vector consists of the previous L - 1 input symbols, and the phase 
Ok, which is determined by all previous input symbols. Even when g ( t )  has a fi- 
nite length L, the length of phase function q ( t )  is still infinite (see Figure 6.2). This 
is to say, CPM signals have an infinite long memory. It is for this reason that CPM 
signals can achieve better error performance than that of sym bol-by-symbol modula- 
tion schemes. Since the memory length is infinite, for optimum detection, a receiver 

C, has a diffrent form in Chapter 3, but it can be reduced to the simpler form here. 
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Figure 6.9 PSDs for binary 6RC with h = 1/2. PDFs are Bl , B2, and B3. From [9]. Copyright I986 

Plenum. 

must observe a transmitted waveform with infinite length and chooses the infinitely 
long sequence {ak} which minimizes the error probability. This can be achieved by 
the maximum likelihood sequence detection (MLSD). Of course this type of receiver 
does not exist in practice. The practical receivers can only observe a waveform with 
a finite length (N). As a result, the receiver is suboptimum. When N -+ m, the 
receiver becomes optimum. 

In this section we will analyze the error performance of the MLSD for CPM 
signals. The practical demodulator may, or may not use MLSD, depending on the 
trade-off between transmission power and system complexity. But the error perfor- 
mance of the MLSD can always serve as a bench mark. We will discuss various types 
of CPM receivers, optimum or nonoptimum, coherent or noncoherent, in Section 6.5. 
We will see that the error performance of the MLSD receiver and other receivers is 
determined by the Euclidean distances, especially the minimum distance, between 
signals. Therefore we will study the Euclidean distance of CPM signals in this sec- 
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tion in detail. 

6.3.1 Error Probability and Euclidean Distance 

Assuming the CPM receiver observes a sequence of N symbols. That is, the received 
signal is 

where si (t) is the signal determined by the ith data sequence ai. For M-ary symbols 
there are a total of & f N  different sequences. Therefore there are a total of A P V  
different si (t). Viewing each si (t) as a member of the MN-ary signals, the results 
of detection of M-ary signals in Appendix B can be applied (M-ary becomes AWv- 
ary here). Since all si (t) have the same energy and are equally likely, from Appendix 
B we know that the optimum detection is the MLSD which also achieves minimum 
sequence detection error probability. The MLSD receiver correlates the received 
signal with all possible signals 

and chooses the signal sequence which maximizes li. 
The error probability that si (t) is detected as any other sequence is bounded by 

the union bound (Appendix B, (B.43)) 

where Dij denotes the Euclidean distance between the two signals, which is defined 
as 

Dij = 

The squared distance is 

r NT 

= /o 
[sf ( t )  - 2si ( t )  s ( t )  + S; ( t )]  d t  
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where Es is the symbol energy, and o(l/ f,) denotes a term of order 1 / f,, which 
means that the term is proportional to a factor llf,. This term is negligible when 
f, >> 1, which is the usual case in CPM. Thus the distance in the limit of high 
frequency is 

- cos A@(t. ' y i j ) d t  u:j = 2NE,  - lYT 2; 

where 

The superscript denotes the ith or jth data sequence and yij is the diflemren data 
sequence between ai and aj . 

Expression (6.30) is still not the most convenient one. The energy E, is the 
symbol energy. In comparison modulation schemes, we must compare the error per- 
formance based on the same bit energy &. Since Es = (log2 M ) E b ,  we normalize 
the distance to obtain 
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This shows that dfj is a nondecreasing function of the observation length N for a 
fixed pair of phase paths. 

Now let us return to (6.28). Using an upper bound of the Q function 19, p. 211 

we can write 

Each exponent contains the signal-to-noise ratio (SNR) Eb/No.  For high SNR, the 
term with the smallest d:j will strongly dominate (6.34). Therefore at high SNR, we 
can approximate the bound as 

where Ki is the number of signals that have the minimum distance with si( t) .  The 
total error probability can be bounded by 

K 
P, 5 - exp{- min [ d ? j ] ( ~ b / 2 ~ o ) }  

2 293 

where K is the number of signals that attain the minimum distances in all cases. A 
definition of minimum distance that applies to any signal set can be written as3 

For CPM signals it becomes 

When the observation length N goes to infinity, the minimum distance is calledfree distance. That 
is 

d f r e c  = lim dm;, 
N 00 
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Using d m i I ,  notation (6.36) becomes 

or using (6.33) we have 

Note P, is the error probability of sequence detection, not the symbol or bit error 
probability. However, (6.39) and (6.40) are approximately equal to the symbol or bit 
error probability, since at high SNR a sequence error is most likely caused by one 
symbol error or one bit error. Even if a sequence error incurs multiple symbol or bit 
errors, the result is just an increase of the value of the factor K. This may cause a 
fraction of a dB increase in the error probability graph. 

Since the error performance is primarily determined by the minimum distance 
dmin,  the error performance assessment of various CPM schemes can be replaced by 
assessment of dmin or dLin. In other words, d:in will become the indicator for error 
performance evaluation and comparison. 

To calculate d k i n  for an observation length of N symbols, all pairs of phase 
paths in the phase tree (or trellis, for rational h) over N symbol intervals must be 
considered. The phase paths must not coincide over the first symbol interval. The 
Euclidean distance is calculated according to (6.32) for all these pairs, and the min- 
imum is the d:,, over the observation of N symbols. The phrase "over the obser- 
vation of N symbols" implies that d k i ,  varies with ilr. Of course d k i n  varies with 
h and g ( t )  too since A@(t. ri,) in (6.32) is a function of h and g ( t ) .  But for the 
discussion below, we are only interested in its dependance on N and denote it as 
dLi, (N). 

A tight upper bound d; on d Z i n ( l V )  is an important indicator of the error per- 
formance of the scheme since it gives the maximum achievable performance. To 
construct an upper bound on dLi,(IV) we can choose any pair of phase paths of 
length N. The distance of this pair must equal or exceed d2mi,(N). Since dki, is a 
nondecreasing function of N for a fixed pair of phase paths, d;,,(ffi) must equal or 
exceed dki,(lV) for any finite N. Thus we can choose any pair of phase paths of an 
infinite length to find an upper bound on d k i n ( N )  for any N .  Good candidates for 
a tight bound are infinitely long pairs of phase paths that merge as soon as possible. 
Some merges occur only for some specific h values. Others occur independent of 
h, which are called inevilable. The first inevitable merge is usually used for upper- 
bound calculation. The first inevitable merge occurs in general at t = (L + 1)T. 
The distances for all pairs of phase paths which give a first inevitable merger in the 
phase tree (for real h) or trellis (for rational h only) are calculated and compared. 
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The minimum of them is the upper bound d i .  Sometimes the second, third or even 
deeper inevitable mergers may provide even tighter upper bound. For details about 
upper-bound calculation, refer to (7,8]. 

6.3.2 Comparison of Minimum Distances 

Eficient algorithms using the phase tree or trellis exist for computing d:in and its 
upper bound d; for different g ( t ) ,  L, h, and M 19.161. We will not attempt to describe 
the algorithms here since they are quite complicated. However, for the simple case 
of CPFSK (i.e., l REC), an exact expression of di in (in fact, d2free) has been found. 
First the upper bound for binary 1 REC has been shown in (91 as d i  = 2[1 -sinc(2h)]. 
Later, it was shown that this is in fact the exact value of dkin for h < 1/2 for binary 
1 REC [u]. Finally, this result was extended to more general cases in [ I  81. Specifically, 
d:in of M-ary CPFSK at any rational modulation index h = p /q ,  where p and q are 
relatively prime positive integers, is given by 

integer h 
m&{2 log2 M[1  - sinc(yh)]} q 2 Af 

(6.4 1) 
2 log, M [l - sinc (2 h)] , h < 0.3016773, q < A 1  

( log, hf: h > 0.3016773, q < A1 

where y = 2,4 ,6 ,  . . . , 2 ( M  - 1). It is clear from the above expression that dLi, is 
proportional to log, M. In other words, larger M yields larger minimum distance. 

We now present some results as examples in order to get an idea of the behavior 
of and d$ for more general cases. First we want to show how dg varies with h. 
and how dki, varies with h and N. An example for a binary 3RC scheme is shown 
in Figure 6.10. The upper bound reaches its peak at an h value slightly smaller than 
one. The actual minimum distance d2i, also generally increases with h for small h 
values and become oscillating for larger h values. For N = 1, dki, is very poor, 
but with N = 2, it already increases significantly. When N = 4, the upper bound 
is reached in the region 0 < h 5 0.6. For h - 0.85 the upper-bound value of 3.35 
is reached with N = 6. Further increase of N does not increase d i in  significantly. 
There are some weak points of h: h = 213 and h = 1, where the values of d:,, are 
significantly lower. For practical design, we can approximate the optimum h z 0.85 
by a rational number, for instance, h = 718 = 0.875. Then the scheme will have a 
state trellis and the MLSD can be performed by the Viterbi algorithm. 

Figure 6.1 1 compares the d i  for binary IRC through 6RC. The linear vertical 
scale is the absolute distance and the dB scale is the relative distance normalized to 
that of MSK. The most important observation from this figure is that the distance 
increases with L for large h. For h < 0.5, the distance actually decreases with L. 
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But this comparison is not quite fair since the bandwidth also changes with L and h. 
A better comparison is given in Figure 6.12. 

Figure 6.12 is a comparison of dki, between MSK and several schemes of CPM 
versus bandwidth. Each point represents a CPM scheme with its 99% double-sided 
normalized power bandwidth 28Tb shown on the horizontal axis and the dif- 
ference relative to MSK shown on the vertical axis. If we draw a vertical line and a 
horizontal line through the MSK point, schemes to the left side of the vertical line 
are more bandwidth efficient than MSK and the ones to the right of the line; and 
the schemes above the horizontal line are more power efficient than MSK and those 
below the line. Those in the upper-left quadrant are both more bandwidth efficient 
and power efficient than MSK. It is evident that larger L and M yield more efficient 
schemes. 

6.4 MODULATOR 

A conceptual CPM modulator is shown in Figure 6.13. This is a direct implementa- 
tion of (6.1). Data sequence {ak} passes through the filter and the multiplier to form 
the frequency pulse sequence {2.rrhakg(t - kT)) which is used by the FM modula- 
tor to yield the required phase @(t, a). Note that an FM modulator instead of a phase 
modulation must be used since the input is g( t ) ,  the frequency pulse, instead of q( t ) ,  
the phase pulse. If the FM modulator is a VCO (voltage-controlled oscillator), the 
VCO's control voltage is 

But the VCO implementation is not practical since conventional free-running VCOs 
can not achieve either acceptable frequency stability or the linearity required for low 
distortion. Many practical solutions have been proposed. One solution is to use the 
quadrature structure proposed in [19] and also described in [9]. Other structures that 
use phase lock loop or bandpass filter and limiter are also described in 19). Another 
method is to use all digital techniques, with the analog VCO replaced by a digital 
NCO (numerically controlled oscillator) (201 We will describe these structures below. 

6.4.1 Quadrature Modulator 

The quadrature structure can be derived by rewriting the normalized CPM waveform 
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Figure 6.10 Minimum distance vs. h for binary 3RC scheme. From 191. Copyright @ 1986 Plenum. 
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Figure 6.11 The upper bound d i  as a function of h for LRC, L = 1,2, .. . ,6 .  From [I) .  Copyright (CJ 
1986 IEEE. 
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Figure 6.12 Power-bandwidth trade-off for CPM schemes using RC pulses. The bandwidth i s  defined 
with the 99%-power-in-band definition. The specific schemes are plotted as points and connected by 

straight lines. From [I]. Copyright @ 1986 IEEE. 
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Figure 6.13 Conceptual CPM modulator 191. Copyright Q 1986 Plenum. 

s&) = s ( t ) / A  as: 

so ( t )  = I ( t )  cos(27r f,t) - Q ( t )  sin(2n f , t) ,  

where 

I ( t )  = cos @ ( t ,  a) = cos[O(t, a k )  + ek] 
and 

Q ( t )  = sin @(t ,  a) = sin[Q(t, ak) + Qk] (6.44) 

This expression is very similar to those of MPSK or MSK. The difference here lies 
in the generation of I ( t )  and Q(t ) .  The most general and straightforward way is to 
use stored lookup tables for i ( t )  and Q ( t ) .  Figure 6.14 is the modulator based on 
(6.42) using ROM (read only memory) to store I ( t )  and Q( t )  [7,8]. Here we assume 
a rational h. Thus the number of shapes of @(t, a) in a symbol interval is finite (e.g., 
see Figure 6.4). So are the number of shapes of i ( t )  and Q( t )  in a symbol interval. 
Therefore all possible shapes of I ( t )  and Q( t )  in a symbol interval can be stored in 
ROMs. Since the shape of @ ( t ,  a) in a symbol interval is determined by the state 
s k  = (Bk, ak- l )  = ( B k ,  uk-1, ak-2, . . . , a k - L + l )  and the current input symbol a k  

(again, refer to Figure 6.4), the shapes of i ( t )  and Q( t )  in a symbol interval are 
addressed by the states sk and the current input symbol ak. 

In Figure 6.14, the data symbols are received by the shift register of length L, 
The output of the shift register is a symbol vector a k  = (ak, uk4 Q I ; - 2 ,  . . . , ak- L+ 1 ). 
The phase states Bk can be generated by a phase state ROM and a delay of T. At each 
symbol time, ak and O k d l  are used as input to the state ROM to obtain O k .  Preferably 
a phase state serial number u k  instead of Q k  can be used. By doing this the phase 
state generation can be implemented as an up/down counter. One way to relate vk to 
Qk is to use the relation 

Q k  = ( h w k  + 4,) mod (2n) (6.45) 
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Figure 6.14 Quadrature modulator using phase state ROM. From [9]. Copyright @ 1986 Plenum. 

where 4, is an arbitrary phase constant which is usually set to zero in analysis. For 
example, values of Ok of the binary 3RC with h = 213 are 0,2n/3 and 4x/3 (see 
(6.14)), which can be represented by vk = 0 ,1 ,2 .  

The I ( t )  and Q( t )  shapes are swept by a counter C at a speed m/T, where m is 
the number of stored samples per symbol interval. The symbol vector ak, the phase 
state serial number uk, and the counter output c are combined to form the addresses 
to obtain the samples of I ( t )  and Q(t )  in the ROMs. These samples are converted to 
analog by the D/A converters. The rest of the modulator is the same as that of typical 
quadrature modulators. 

The address field of the ROM is roughly L log, M+ [log2 p] + 1 bits. L log, A 1  is 
for ak, and [log, pl + 1 is for Bk or v k ,  where 1x1 denotes the smallest integer which 
is greater than x. Parameter p is the number of different Bk and is related to index h 
by h = 2 q / p  which we have stated before. The ROM size can be easily figured out. 
Since there are pML- l  states, the current symbol has A l  different values, thus the 
number of i ( t )  or Q(t) shapes is pML-I M = pML.  Each shape has rn samples and 
each sample is quantized into m, bits. Thus the ROM size is pAILmm, bits. The 
above address length and ROM size are usually small. For example, for binary 3RC 
with h = 2/3, the ROM address length is only 5 bits and the ROM size is 1536 bits 
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Figure 6.15 PLL implementation of CPM modulator. From [9) Copyright 1986 a Plenum. 

assuming m = 8 and m, = 8. For larger values of M ,  L ,  m, and m,, the ROM size 
is still very small in comparison to the capacity of ROMs that today's technology can 
achieve. 

6.4.2 Serial Modulator 

Similar to the technique used for serial MSK (SMSK) studied in Chapter 5, CPM 
modulator may be implemented serially. Figure 6.15 is a CPM modulator consisting 
of a PSK or simple CPM modulator and a PLL (phase locked loop). By replacing the 
PLL with a bandpass filter and a hard limiter one can implement a CPM modulator 
as in Figure 6.1 6. Like the SMSK case, the basic function of the PLL or bandpass 
filter is to smooth the incoming waveform, thus creating a signal with correlation 
over several symbol intervals and a narrower spectrum. By properly choosing the 
PLL or the filter, it is possible to approximately generate a signal very close to the 
desired CPM signal (in the SMSK case, the generated signal is exactly the MSK 
signal). The limiter in Figure 6.16 is used to keep the signal amplitude constant in 
case there is any amplitude variation after filtering. In the following we show how 
CPM modulation can be achieved by these two structures. 

6.4.2.1 PLL Modulator 

Refer to Figure 6.15. Assuming the phase detector is used in its linear region, the 
input phase from the simple CPM modulator is 
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Figure 6. I6 Bandpass filter and hard-limiter implementation o f  CPM modulator, From 191, Copyright 
@ 1986 Plenum. 
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Assuming the PLL impulse response is h( t )  then the output phase is 
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where * denotes convolution. Comparing this to the CPM phase expression, we have 

.j a(t> FM Modulator 
I 
t 

Thus the desired q( t )  can be deconvolved into two simpler functions, qI (t) and h ( t ) ,  
and the CPM modulator complexity is reduced. The deconvolution may be done 
easier in eequency domain since 

The problem with the PLL modulator is the limit on modulation index h since the 
maximum of the phase deviation @,(t, a) - Q1(t ,  a) is limited by the linear region 
of the PLL operation characteristic. The limit also depends on the phase pulse length 
L and number of levels M. A rough estimation is that 19, p.226) 

I 
I 
8 

which is quite small for large L and h i .  For example, a binary 3RC CPM would 
have a maximum index of 0.5 and a quaternary 2RC a maximum index of 0.2. 

I 
I Bandpass 
I 
I filter 1 

I 21th 27% t 
I , , , , , , , , , , , , , , , , , , , , , , , , , , , , , - , - - '  
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6.4.2.2 BPF-Lim iter Modulator 

In Figure 6.16, the phase of the limiter output is the same as the input. That is 

where signal and filter are denoted by their complex envelopes, and arg{z) denotes 
the argument of the complex quantity r .  The above expression can be written as 

where @(t ,  a)  is the phase of the signal From the simple CPM stage which can be 
written as 

where we have assumed that q ( t )  has a finite length L. For low modulation indexes, 
the time varying part of @(t, a) may be considered small enough to expand the ex- 
ponential function into a Taylor series. That is 

Q1 ( t ,  ak) = arg{[l + jQ(C ak) - 
0 2 ( t ,  ak) + .. .] * Z ( t )  

To a first-order approximation, we have 

Now we assume the filter a ( t )  is real (this requires the bandpass filter have a sym- 
metrical frequency response), we have 

The denominator is a constant, denote it by A, and for small h values the arctan may 
be omitted, thus 
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Figure 6.17 All digital CPM modulator. From [20]. Copyright (n 1987 IEEE. 

When this expression is compared with the standard CPM phase, it is seen that the 
bandpass filter to a first-order approximation acts as a linear filter on the phase re- 
sponse. Thus one can synthesize the desired ql (t) from two simpler functions q ( t )  
and a( t ) .  

The problem of this approach is of course the imperfect linearity of the phase, 
which may cause some spectrum spread [9, p. 2311. 

The advantages of the two serial modulators in comparison with the quadrature 
modulator are faster speed and no need of balance between two channels. 

6.4.3 All-Digi tal Modulator 

A completely digital implementation of the CPM modulator is proposed in [ ~ o I .  The 
structure is based on the conceptual CPM modulator in Figure 6.13, but all func- 
tion blocks are implemented digitally. Filter G(jw) (Fourier transform of g ( t ) )  is 
replaced by a digital FIR filter G(z), and the VCO by a numerically controlled oscil- 
lator (NCO). Figure 6.17 is the all-digital CPM modulator. Even though the ROM- 
based quadrature modulator (Figure 6.14) uses digital technique to generate I ( t )  and 
Q(t ) ,  the modulation stages are still analog. In this all-digital implementation, the 
modulation stage is realized by the NCO. 

The NCO consists of an accumulator, a sine ROM, a DAC, and a low-pass filter. 
The low-pass filter is to filter out any high-frequency harmonics after the DAC. The 
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sine ROM stores samples of just one sinusoid so that the content of the nth memory 
location is 

(n) = [ 2 K - 1  c o s ( 2 ~ n / N ) ]  

where [.] means the nearest integer, and K is the number of bits per location in the 
ROM (i.e., the DAC converter resolution). N is an integer which is the discrete 
period of the sinusoid. The analog period or frequency is determined by N and the 
clock frequency f, of the circuit. The accumulator is in fact a discrete integrator. 
At symbol interval j, it provides a number n j as an address for the ROM. Assume 
the accumulator increases its output by 1 at each clock interval, the output of the 
sinusoid will repeat itself every N clock intervals. That is, the output signal will 
have a frequency of 

which may be called the sensitivity of the NCO. KNCo is usually an integer. Suppose 
now the accumulator accepts a number k at its input for each clock interval, the output 
of the accumulator in the jth interval of the clock is 

Thus the frequency of the signal at the output of the DAC is 

The constraint on k is that k 5 N / 2  due to the sampling theorem. By changing k, 
different frequencies can be obtained. The highest is fs/2 and the lowest is f s /N = 

KNCO. 
For CPFSK, the only thing that the FIR filter in Figure 6.17 needs to do is to 

put out different k values from the frequency paths ROM for different data symbols. 
In fact, M different values of k are needed for an M-ary CPFSK scheme. Since 
usually fNco  is chosen as an integer multiple of the symbol rate ( l / T ) ,  the number 
of periods of the sinusoid in T is an integer. Thus the signal can start with zero phase 
and also can end with zero phase in every symbol interval. In this way, the phase 
continuity can be achieved. 

For more complex CPM schemes, the FIR must provide frequency pulse-shaping 
processing. In principle, this processing can always be provided by an FIR filter, but 
in practice it is usually much simpler to use the structure shown in Figure 6.17. The 
L-stage shifier register remembers the last L symbols and uses them as the addresses 
for samples of one of A f L  possible frequency paths. The frequency paths can be 
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easily derived from the phase paths (see (6.9)): 

whose samples are stored in the frequency paths ROM. 
This all-digital CPM modulator is extremely stable, with very low phase noise, 

and very flexible. For instance, by increasing N, the resolution can be increased. For 
more design details the reader is referred to 1201 where simulation and experimental 
results are also available. 

6.5 DEMODULATOR 

The demodulator is sometimes referred to as the receiver in the literature, even though 
their meanings are slightly different. We will use them interchangeably. 

An important parameter which dictates the structure of the receiver is the mod- 
ulation index h. If h is rational, as we demonstrated in Section 6.1, there is a state 
trellis for this CPM scheme. Each path in the trellis uniquely corresponds to a data 
sequence. Some search algorithms (e.g., the Viterbi algorithm) can be used to search 
through the trellis to find the transmitted data sequence under certain criterion. If 
h is irrational, there are no state trellis that exists. In this case a sequence detection 
based on the phase tree is theoretically possible, but it is impractical since the num- 
ber of branches at a node in the phase tree grows exponentially with the length of the 
path. Thus there exists no trellis for irrational h. 

We will consider rational h only. 

6.5.1 Optimum ML Coherent Demodulator 

An optimum MLSD coherent demodulator structure was first developed for binary 
CPFSK in (211 and extended for M-ary CPFSK in (221. However, their results are in 
fact applicable to any CPM scheme as pointed out by [9, p. 2331. The receiver is to 
detect the first symbol using an observation of N symbols. As we have pointed out 
previously, the phase produced by the first symbol (any symbol, in fact) lasts forever. 
Therefore, only when N -+ oo, the receiver is optimum in the sense that all phase 
information of the first symbol contained in the entire signal is used. When N is 
finite, the receiver is only suboptimum in the sense that not all phase information is 
used. However, if only N symbols are observed, the best we can do is to perform 
MLSD based on the given observation. In this sense, it is optimum. That is why it 
is called optimum ML demodulator. 
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We use a shorthand notation developed in [21] for the received signal 

where s ( t ,  a], A k )  is a general CPM signal corresponding to the data symbol se- 
quence { a l ,  A k } ,  al is the first symbol to be detected, and Ak = {a2, ag, ..., a ~ } ,  
k = 1 ,2 ,  ..., MN-' are the all possible data sequences with N - 1 bits following 
al. For coherent detection, the initial phase of the signal is known, and hence will 
be assumed to be zero without loss in generality. 

The optimum receiver is a first-symbol detector (7.21.221. The receiver is only 
interested in finding an estimate of the first symbol a1 , not the entire sequence. Thus 
we can partition all h fN sequences into Af groups: 

I (hf - 1), az, as, ..., a~ 

- ( M  - I) ,  az,a3, ..., aLv 

Note that each group contains &IN-' sequences since {a2 ,  a3, . . . , a~ ) has MN-' 
possible combinations. The receiver must find which group of sequences maximizes 
the likelihood function, and take the first symbol of that group as the estimate. This 
problem is the composite hypothesis problem treated in [23,24] and other books. The 
main point about the composite hypothesis problem is that the observables pertaining 
to the symbol to be estimated (a 1, here) are distributed according to certain probabil- 
ity density, and to estimate the symbol, the likelihood of the symbol must be averaged 
over the density. In our case (AWGN channel with a noise spectral density No), the 

likelihood conditioned on a specific Ak is exp (e J:~ r ( t ) s ( t . a l .  Ak)dt  [23.24] ) 
. It must be averaged over the probability distribution density of Ak to obtain the 
unconditional likelihood of a l .  Since Ak can have m = nlN-' different possibili- 
ties, the discrete probability density function (PDF) of Ak is f ( A k )  = l / h l N - l  for 
each possible Ak. Thus the likelihoods for all A1 possible a1 s are (ignoring factor 
1/111"-' since it is the same for all likelihoods) 
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2 lNT r ( t ) s ( t !  -(A! - I), Aj)dt I (6.47) 
No 

The receiver then chooses the data symbol a1 that corresponds to the largest of l1 to 
In!. The receiver is shown in Figure 6.18. The correlators' outputs are denoted by 
xAj,X = 1,2 ,..., hf, j = 1 . 2  ,..., mwhere 

r ( t ) s ( t l  A, Aj)dt ,  X odd 
x A { ( ( t , - h - , A j ) d t  heven 

Then the h4 likelihoods can be written as 

It is impossible to analyze the exact error performance of the optimum receiver. How- 
ever, for high SNR the receiver can be simplified to a suboptimum receiver whose 
error performance can be analyzed by means of union bound. 

For large SNR, 

where XA is the largest of xx j. Furthermore, since exp( ) is a monotonic function, x~ 
is an equivalent parameter for decision making. Thus a suboptimum receiver does not 
need the exp( ) blocks and the summers in Figure 6.18. The receiver directly checks 
the outputs of the conelators and makes the decision on a1 that corresponds to the 
largest xxj. Its performance should be very close to that of the optimum receiver for 
high SNR. 

The suboptimum receiver is in fact an ML sequence detector. As we pointed 
out before, if N -+ oo, the receiver is optimum. Therefore, the performance of the 
suboptimum receiver can be compensated for by increasing the observation length. 

The error probability of the optimum first-symbol receiver is difficult to analyze. 
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Figure 6.18 Optimum and high-SNR suboptimum CPM receivers. From (221 Copyright @ 1976 IEEE. 
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However, for high SNR, the suboptimum receiver is just as good as the optimum one. 
The error performance thus can be evaluated by using the suboptimum receiver which 
is the ML sequence detector. Its performance has been analyzed in Section 6.3, and 
is dominated by the minimum distance between all sequences. That is 

where K is the number of sequences that attain the minimum distances in all cases. 
Using the definitions ofthe distance and x, they can be related as d2 = & [[NE, - s] 
and dLin = [ N E s  - x ~ ] .  Eb 

The error probability upper-bound curves for binary, quaternary, and octal CPFSK 
schemes with various h values are given in [22] (Figures 6.19 to 6.21). The h values 
used in the figures are the optimum values, that is, the values for which the upper 
bounds are the smallest. These values are found by trial-and-error numerically. The 
curves show that binary CPFSK (h = 0.715) offers up to 1 . I  dB improvement for 
five-symbol detection with respect to coherent BPSK. Quaternary CPFSK offers a 
2.5 dB improvement for two-symbol detection ( h  = 1.75) and a fbrther 1 dB im- 
provement for five-symbol detection (h = 0.8) over coherent QPSK. Octal CPFSK 
(h = 0.879) offers a 1.9 dB advantage over orthogonal signaling for two-symbol de- 
tection and a 2.6 dB improvement for three-symbol detection. The advantage over 
nonorthogonal coherent 8PSK is huge, in the neighborhood of 7.5 dB. Simulation 
results provided in [22] confirm the tightness of the upper bound at high SNR (> 4 
d B ) .  

Note that the above comparison is based on the assumption that no signal dis- 
tortion exists at receiver. This implies the bandwidth of the communication system 
is, theoretically, infinite; and practically, wide enough to receive most of the signal 
spectrum. This in turn implies that the bandwidth requirement is generally higher 
for larger values of h (refer to Figures 3.12 to 3.14). Obviously this argument also 
applies to the noncoherent detection case in the next section. 

6.5.2 Optimum ML Noncoherent Demodulator 

The optimum ML noncoherent demodulator is also developed in 12 1,221. For nonco- 
herent detection, the carrier initial phase 4 is unknown. We assume a uniform PDF 
f ( 4 )  from 0 to 2x, that is 

Different from the coherent case, the r ( t )  is observed for (2n + 1) symbols and the 
symbol to be detected is the middle symbol [21,22] (according to [21], the magnitude 
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Figure 6.19 Pb for binary coherent CPFSK in comparison with coherent BPSK and differentially co- 

herent BPSK. From [22) Copyright @ 1976 IEEE. 
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Figure 6.20 P, for quaternary coherent CPFSK in comparison with coherent QPSK. From 122). Copy- 
right @ 1976 IEEE. 
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Figure 6.21 P, for octal coherent CPFSK in comparison with coherent 8PSK and orthogonal signaling. 

From [22]  Copyright @ 1976 IEEE. 
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of the complex correlation between two binary CPFSK waveforms corresponding to 
data sequences differing in only one bit is a minimum when the difference bit is in 
the middle). Using a shorthand notation for the signal we can write 

where a,+l is the middle symbol which is to be detected, Ak is a 2n-tuple defined 
as 

There are a total of p = M2n sequences of Ak. All of them are equally likely, that 
is, the PDF of A is f (A) = 1/p .  The conditional likelihood 

must be averaged over A and 4. That is 

(2n+ 1)T 

A~I ~ ( t ) ~ ( t ,  -(h/f - l) ,  Ak 4)dt f (d)dd) I 
The average over the phase leads to zeroth-order modified Bessel function (see Sec- 
tion B.3 of Appendix B, particularly (B.5 1) to (BS)), so we have 
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where 

and 

Y i k  = 
S r( t )s ( t .  i ,  Ak? ~ / 2 ) d t ,  i odd 
S r ( t ) ~ ( t ,  - ( i  - I) ,  Ak, ~ / 2 ) d t ,  i even 

Since x , k  and Y i k  are Gaussian with nonzero mean, zik is a Rician statistic variable. 
The optimum noncoherent receiver structure is shown in Figure 6.22 where all 

integration intervals are from 0 to (272 + 1)T. It is optimum independent of SNR. 
Unfortunately, its error performance is difficult to analyze, as in the coherent case. 
However, we can derive a suboptimum receiver for high SNR and its error perfor- 
mance bound can be determined. 

For high SNR, we have with good approximation 

where zin is the largest of the z i k .  In addition, the Bessel fbnction is a monotonic 
- function, thus the suboptimum receiver needs only to examine all the z i k ,  i - 

1,2,  . . .? M, and chooses the a,+l corresponding to the largest. The suboptimum 
noncoherent receiver is also shown in Figure 6.22. The error performance of the 
suboptimum receiver can be analyzed using the union bound. The reader is referred 
to (22) for details. 

The error probability upper-bound curves for noncoherent binary, quaternary, 
and octal CPFSK schemes with various h values are given in [22] (Figures 6.23 to 
6.25). The h values used in the figure are the optimum h values that are similar 
to the coherent ones. The binary noncoherent CPFSK (h = 0.715) outperforms 
coherent BPSK up to 0.5 dB for SNR > 7.5 dB for five-symbol detection, while 
for three-symbol detection, it is inferior by about 1 dB at high SNR. Quaternary 
noncoherent CPFSK also achieves better performance than coherent QPSK, offers 
a 2 dB improvement for three-symbol detection (h = 0.8) and a further 0.8 dB 
improvement for five-symbol detection (h  = 0.8). Noncoherent octal CPFSK ( h  = 
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Figure 6.22 Optimum and high-SNR suboptimum CPM noncoherent receiver. From [22] Copyright @ 
1976 IEEE. 
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Figure 6.23 Pb of binary noncoherent CPFSK in comparison with coherent BPSK. From [22)  Copyright 

@ 1976 IEEE. 
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FOR NONCOHERENf CPFSK, h = 0.8 

Figure 6.24 P, of 4-ary noncoherent CPFSK in comparison with coherent QPSK. From [22) Copyright 

@ 1976 IEEE. 
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FOR NONCOHFRENT CPfSK. h - 0.879 
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Figure 6.25 P, of 8-ary noncoherent CPFSK in comparison with coherent 8PSK and coherent orthog- 

onal signaling. From [22]. Copyright @ 1976 IEEE. 
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0.879) offers a 1 dB advantage over orthogonal signaling for three-symbol detection 
and a significant advantage over nonorthogonal SPSK, in the neighborhood of 6 dB. 
Simulation results provided in [22] confirm the tightness of the upper bound at high 
SNR (> 4 d B ) .  

6.5.3 Viterbi Demodulator 

Even though the above two receivers can be applied to general CPM, they become 
unreasonably complex. Also, it is not clear how successive symbol decisions can be 
made in a convenient way using the structures in Figures 6.18 and 6.22. An MLSD 
demodulator using the Viterbi processor was proposed in [8] for partial (and full) 
response CPM. We will study this structure in this Section. We will see that this 
structure can provide successive real-time symbol decisions in a convenient manner. 

This structure is based on the state trellis that we developed in Section 6.1. As 
pointed out before, for CPM schemes to have a state trellis, the modulation index h 
must be a rational number. Thus in this section, we exclusively deal with rational h. 

We have studied the state trellis of CPM schemes in Section 6.1, and an example 
is given in Figure 6.5. Here we briefly repeat the state development in Section 6.1. 
A state at t = kT is defined by the vector 

where L is the finite length of the frequency shape pulse g ( t ) .  For rational h = 2 q / p  
(q, p integers), there are p different phase states with values O , 2 x / p ,  2. 2 r / p l  . . . , ( p  - 
1)2n/p. Thus the number of states is 

In the state trellis, there are M branches coming into a state and M branches leaving 
from a state. So the total number of in-branches is p ~ L  and number of out-branches 
is also p ~ L .  

The receiver observes the signal r ( t )  = s ( t ,  a) + n(t) ,  where the noise n ( t )  is 
Gaussian and white. Here we explicitly show the data sequence a as an argument 
of the signal. The MLSD receiver maximizes the log likelihood function, or equiv- 
alently, the correlation (see Appendix B, Detection of M-ary Signals) 

where Z is any possible data sequence which might be transmitted, one of them is a, 
the actual transmitted one. A practical receiver can only observe signals for a finite 



312 Digital Modulation Techniques 

period. Thus we rewrite the above as 

and it can be written in a recursive form 

where 

which is called the metric of the branch corresponding to the signal s ( t  , S) in the kth 
symbol interval (the amplitude of s ( t ,  Z) is normalized to 1 since it is the same for all 
signals). This metric is the correlation between the received signal and s ( t ,  la) over 
the kth symbol interval. 

The Viterbi algorithm (VA) recursively accumulates the branch metrics up to the 
kth symbol interval for certain paths in the trellis and chooses those paths that have 
the maximum path mefrics. Since the VA does not search all paths, the algorithm is 
much more efficient than the exhaustive search. Yet the VA can guarantee to find the 
maximum likelihood path. We will describe the VA in detail shortly. 

Now we have to construct a receiver that can produce the branch metric Zk(Z) 
in an efficient way. Since the number of branches (in or out) in the trellis is pi23 ', 
there are p M L  different values of Zk (E). It is well known that a correlator can be 
implemented as a matched filter with its output sampled at the end of the integration 
period. Thus we want to realize (6.51) by matched filters. The signal can be written 
in quadrature form as (see (6.42) to (6.44)) 

and the received noise is bandpass noise which can also be put in a quadrature form 

Thus r ( t )  can be written as 
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cos o,t 

Figure 6.26 Basic quadrature receiver. From [9) Copyright @ 1986 Plenum. 

where 

These two quadrature components can be produced by the quadrature receiver 
in Figure 6.26. Using (6.52) in (6.5 1 )  and omitting double frequency terms and a 
constant of  112, we have 

This can be implemented by 4~~ baseband filters with the impulse responses 

COS[O(T - t ,  gk)] 
for t outside [0, T ]  
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ti . q ( ( l  - j)T - t ) ]  cos[2nh c ~ = - L + ]  J 

= ( 0  for t outside [0, T] (6.54) 

and 

sin [B(T - t , &)I 
h i  ) = { 0 for t outside [0, T ]  

sin[2nh ~ g -  --L+l ii 3 q ( ( 1  - j)T - t ) ]  
= { 0 for t outside 10, T ]  

(6.55) 

There are ML different Zk sequences. For each sequence a pair of matched fil- 
ters is needed for T(t,  a) and another pair is needed for o( t ,  a). Thus total 2 M L  
cosine matched filters and 2~~ sine matched filters are needed. Realizing that 
every & sequence has a corresponding sequence with reversed sign, the number 
of matched filters can be reduced by a factor of 2. Figure 6.27, where H = h f L ,  
is the optimum receiver based on (6.53) using 2iWL matched filters. The outputs of 
these filters are sampled at the end of the kth symbol interval, which produces the 
branch rnetrics Zk(Gk, &). The processor in the figure is the Viterbi processor. 

The Viterbi algorithm was discovered and analyzed by Viterbi [25] in 1967 for 
decoding convolutional codes. Later on it was extended to maximum likelihood 
sequence estimation (MLSE) for channels with intersymbol interference [26] and for 
partial response continuous phase modulation (81. All of them have one thing in 
common: there is memory in the received signals. That is, the received signal values 
are determined by not only the current symbol, but also some or all previous symbols. 
Each of the possible combinations of the previous symbols constitutes a state. In the 
CPM case, the signal value is also affected by the cumulate phase Bk (see Section 
6.1.2). Assuming that L - 1 is the memory length, the symbol is M-ary, and Bk 
has p different values, then there are total S = pML-l  states. Each of the possible 
transmitted sequence is a path in the S-state trellis. The MLSE receiver searches 
through the trellis to find the path which best matches to the transmitted sequence 
in the maximum likelihood sense. The Viterbi algorithm is an efficient algorithm 
to implement the ML search. The brutal-force search (i.e., test each path), is too 
time consuming. It needs to test h l N  paths, where N is the number of symbols 
in a frame of data. To get an idea of the number of paths, let us assume 111 = 2 
(binary), N = 64 (8 bites), then M" = 1.89 x 10'' = 1.89 x 101•‹ billion paths. 
Searching this trellis is impossible in practice. However, with the Viterbi algorithm, 
as we will see shortly, the number of paths to be searched is only the number of states: 
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Figure 6.27 Matched filter bank. From 181. Copyright @ 1981 IEEE. 
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S = Usually L and p are small integers. For example, if L = 3, y = 3. 
then S = 12 (Figure 6.5). The savings on the search time are tremendous, and the 
search time of the Viterbi algorithm is independent of the sequence length. 

Now we describe the Viterbi algorithm for the partial response CPM case. Refer 
to Figure 6.5 while reading the following steps of the Viterbi algorithm. 

At time (k  + 1)T, for any state node, compute the 121 (A1 = 2 in Figure 6.5) 
branch metrics Zk (&, &) for the incoming hf branches using (6.53). This is 
done by the matched filter banks in Figure 6.27. 
Add the ill branch metrics to the M path metrics Z k - 1  (ak) which are the path 
metrics for the hl paths up to time kT and are connected with the A l  branches, 
respectively. Thus the path metrics are updated to time (k + 1)T. Denote them 

( 2 )  - as!, ( a k + l ) , i  = 1 .2  ...,: M .  

Compare the hl  updated path metric l f )  (Zk+l) and choose the path with the 
largest path metric as the survivor path of the state node. Eliminate the other 
A 1  - 1 paths. When step one to three are done for all states, there is only one 
survivor path for each state. The survivor paths' data and metrics must be stored. 
Then advance time by T and repeat steps one to three until demodulation reaches 
the end of the sequence. Then choose the path with the largest path metric as the 
demodulated path, which is the maximum likelihood (ML) path. By retrieving 
the stored data of the ML path, we obtain the demodulated data. 

We have asserted that the path found by the Viterbi algorithm is the ML path. 
This assertion is not difficult to prove. Assume that the ML path is eliminated by the 
algorithm at time ti. This implies that the partial path metric of the survivor (denoted 
as Z(ti)) is larger than that of the ML path (denoted as ln,L(ti)). That is 

Now if the remaining (future) portion of the ML path (denote its metric as lnrL  (t  > 
ti)) is appended on to the survivor at time t i ,  the total metric will be greater than the 
total metric of the ML path. That is 

However, this is impossible since the right-hand side is the ML path metric which is 
supposed to be the largest. Hence the ML path cannot be eliminated by the VA. 

References on the Viterbi algorithm are widely available, such as (251, [27], and 
[28] or any coding book. 

Since CPM signal is normally not in a block structure, a modified VA is used for 
the CPM, much the same way as a modified VA is used for decoding convolutional 
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codes [28]. It puts out one symbol at a time successively after a decoding delay that 
is the same for every symbol, and it accepts sequences of indefinite length. The 
surviving paths at each state of the trellis are saved only back to a certain point, a 
length called path memory NT. The decision is made on the oldest symbol by certain 
criterion, such as taking the symbol that belongs to the majority of the surviving 
paths, or the symbol that belongs to the maximum likelihood path, or by simply 
choosing at random. The best criterion depends on conditions like SNR. The choice 
of NT can be guided by the distance property of the CPM. If N B  is the length for the 
paths to reach the upper bound of the minimum distance, then the path memory ATT 
should be at least ,VB, and experiment has shown that ivB is almost always enough 
l91. 

The error probability of the perfect Viterbi demodulator, of course, is the one 
of the MLSD as given in Section 6.3.1, particularly, (6.39) and (6.40). The error 
probability of the modified Viterbi demodulator should be very close to the perfect 
one, especially at high SNR. 

Simulation results of the error probability of the modified Viterbi receiver for 
some representative CPM schemes, such as 8-ary CPFSK and binary 3RC are shown 
in Figures 6.28 and 6.29 191. In Figure 6.28, the path memory has been set to 50 
symbol intervals, which is more than enough for the minimum distance to occur. 
Twenty sample points per symbol interval have been used. Figure 6.28 shows two 
8-ary CPFSK schemes, one with h = 1/4 and the other with h = 5/11. The 8- 
ary symbols are Gray coded. Figure 6.29 shows the results for binary 3RC with 
h = 415 when Nr = 1,2 ,  . . . ,20 and NT = 00. By increasing NT the upper bound 
is improved at high SNR, but it is still loose at low SNR. The asymptotic gain is about 
2 dB over QPSK, which can be fairly accurately predicted by d;,, = 3.17 (dLin = 2 
for QPSK). This conclusion holds for many schemes. That is, dmi, is sufficient for 
the characterization of performance in terms of symbol error probability. 

More results have been obtained for a wide variety of CPM schemes in the lit- 
erature, see for instance [29] and 1301. 

The complexity of the matched filter bank and the Viterbi algorithm limit the 
implementation of such an optimum receiver to small values of hf and L. In the 
following sections, we will present some important research results on reduction of 
complexity of CPM receivers, sometimes at expenses of error performance. 

6.5.4 Reduced-Complexity Viterbi Demodulator 

A class of reduced-complexity Viterbi detectors for partial response CPM schemes 
has been proposed in [3 11 The key concept is that the approximate receiver is based on 
a less complex CPM scheme than the transmitted scheme. The less complex scheme 
is a scheme with a shorter frequency pulse length and sometimes simpler frequency 
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Figure 6.28 Simulated Pb for 8-ary CPFSK with comparisons with asymptotic lower bounds. Modified 
Viterbi receiver. From [9, p. 26 11. Copyright 0 1986 Plenum. 
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X Simulation results 
for NT = 11. 

Figure 6.29 Simulated Pb for binary 3RC, h = 4/5, NT = 1 1 .  Upper bounds for NT = 1,2.. . , 2 0  

and a lower bound are also shown. Modified Viterbi receiver. From [8J Copyright @ 1981 IEEE. 
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pulse. Figure 6.30 shows the transmitter phase tree for 3RC and the receiver phase 
tree for 2REC which is used to approximate the transmitter phase tree. The 2REC 
phase tree is shown with a small phase offset (TI2 in this case). From the figure we 
can see that the two trees are very close. Since all the data information is carried by 
the phase tree, we have reason to believe that using the approximate phase tree for 
demodulation can almost achieve the performance of the optimum receiver which 
uses the transmitter phase tree. If the transmitter pulse length is Lr and the receiver 
pulse length is LR, the complexity reduction factor is hf(L7'-L") in terms of both 
the number of receiver states and that of receiver filters. 

For a particular transmitter frequency pulse g T ( t ) ,  an optimum receiver fre- 
quency pulse g R ( t )  can be found so that the minimum distance of the receiver trellis 
is maximized. In particular, a piecewise linear function for 0 < t < LRT is defined 
in 1311 and used for optimization. 

Simulation results reported in [3l]  are shown in Figures 6.3 1 and 6.32. In Figure 
6.3 1,4RC-4RC2 means the transmission is 4RC and the receiver is based on a 4RC 
pulse truncated to a length of two. 4RC-2T0.5 denotes the scheme with a transmitter 
of 4RC and a receiver based on the optimum piecewise linear function with LR = 2T 
and an index h = 0.5. The 2T0.5 receiver is optimum to the 4RC transmitter. The 
notations in Figure 6.32 are defined in the same manner. From the figures we can 
see that the loss of error performance is very small, which is about 0.1 dB at high 
SNR, while the receiver complexity reduction factor is two to four. 

6.5.5 Reduction of the Number of Filters for LREC CPM 

It has been shown that for LREX CPM, the size of the matched filter bank need only 
increase linearly with L [32]. In Section 6.5.3, we stated that there are 2ML matched 
filters because there are h f L  different values of B ( t ,  &). Here we can show that 
there are only L ( M  - 1) + 1 different O ( t ,  &) for LREC CPM. Thus the number of 
matched filters is only 2L(M - 1) + 2 for LREC CPM. 

The LREC phase pulse is given by 

In the interval (0, TI, it can be easily verified using an example (say 3REC), 
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Phase 

Figure 6.30 Transmitter phase tree (solid) for 3RC and receiver phase tree for 2REC. Correct timing. 
small phase offset (T/2). From f3 11 Copyright @ 1984 IEEE. 
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Figure 6.31 Simulated Pb for 4RC-4RC2 (+), 4RC-2T0.5 (x),  and optimum 4RC (a) for h = 1/2. 
The lower bound for the optimum receiver is also shown.The results are based on 2500 errors. From f3 11. 

Copyright @ 1984 IEEE. 
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Figure 6.32 Simulated P, for quaternary 2RC-2RC1 (+), 2RC-1T0.25 (x). and optimum 2RC (0) for 
h = 1/4. The lower bound for the optimum receiver is also shown. The results are based on 2500 errors. 
From [3 1). Copyright @ 1984 IEEE. 
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where 
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During the interval [kT, (k + 1)T], the time-varying phase 

Whereaj E { - ( A l -  I), ..., -1,1, ..., (113 - 1)). Wecan writeaj = 2uj - ( M -  1) 
where uj  E { O , 1 :  ...? ( M  - I)}. Then 

where 

Since c,":. uk-i E {0, 1,  . . . l  L ( M  - I)}, there are only L ( A I  - 1) + 1 different 
&(t ,  ak). Thus the ML demodulator only needs 2L(M - 1)  + 2 matched filters to 
compute the metrics for all p M L  states as follows. 
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The complexity of the Viterbi processor remains unchanged since the number of 
states is still M L.  

This simplified receiver also can be applied to any CPM with a piecewise linear 
pulse. For smoother pulses one can use a piecewise linear approximation to the pulse 
[321- 

6.5.6 ML Block Detection of Noncoherent CPM 

Maximum likelihood block detection of noncoherent full-response CPM is proposed 
in [XI. The derivation of this receiver starts with the likelihood function conditioned 
on the received signal phase. Then averaging it over the random phase leads to the 
likelihood function which in turn gives the sufficient statistics for decision making. 

Assume the received signal r ( t )  is observed for a N-symbol period. Denot- 
ing the M-ary symbol set as {Ai = -M + (2i - 1): i = 1,2,  ..., M ) ,  let i = 
(il , i2, . . . , i N )  be a sequence of indexes whose elements take on values from the set 
of integers {1,2,  . .. , M}. The detection rule is as follows. At nth symbol time, for 
each particular input data vector A = (Ai, , Ai2, . . . , AiN ) compute 

where 

and the Cis are complex constants defined recursively as follows 

Then 

where i* = (i; , ia, ... , i',) is a particular value of i and A* = (Ai; , Ai; ? . .. , A,;,) is 
the corresponding input data vector. 

The implementation of the above rule is straight forward in complex form (Fig- 
ure 6.33). For MSK ( 1  REC, h = 1/2), the receiver can be implemented in a real 
1-Q form as shown in Figure 6.34. The receiver has a front end (correlators to pro- 
duce r i j )  analogous to that for a coherent CPM receiver. What is different from the 
coherent ML receiver is that the number of the correlators is M ,  not M L  . The corn- 
plexity of the processor that follows depends on the length of the observation. This 
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Figure 6.33 ML block estimator for noncoherent CPM based on an N-symbol observation. From [33) 
Copyright @ 1993 IEEE. 

structure is much less complex than that of the coherent one. 
The error performance analysis in 1331 shows that large gain can be achieved by 

making block-by-block decisions in proportion to the length of the observation rather 
than making symbol-by-symbol decisions based on the same observation length. Fig- 
ure 6.35 shows the Pb upper bounds for IREC CPM with h = 0.5 (MSK) with N 
as a parameter. It is evident that dramatic improvement in Pb can be obtained with 
moderate values of N. 

It should be pointed out that Figure 6.35 curves compare poorly with Figure 
6.23 which is also for noncoherent CPM (not exactly MSK since h = 0.715). How- 
ever, the noncoherent detector for Figure 6.23 detects only one symbol based on N 
(odd) observations, while the detector here detects a block of N symbols based on 
N observations. So the speed is N times faster here. 

6.5.7 MSK-'Qpe Demodulator 

Recall that MSK is a member of the CPM class. It is a I REC CPM with h = 112. Its 
demodulation can be performed by a parallel-type receiver (PMSK), or equivalently, 
by a serial-type receiver (SMSK), as studied in Chapter 5. Research shows that the 
MSK-type receiver works well for binary CPM schemes with h = 112 p, 34361. Of 
course this receiver is not optimum in general, but the performance of this type of 
receiver is almost equal to the optimum Viterbi receiver for schemes with a moderate 
degree of smoothing, that is, overlapping frequency pulses of length L up to three to 
four symbol intervals, such as 3RC, 4RC, TFM, and some GMSK schemes. 
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cos w,t 
Delay ,-fTjy 

Delay w 
Figure 6.34 A real I-Q implementation of an ML block estimator for noncoherent MSK based on a 
two-symbol observation. From [33]. Copyright @ 1993 IEEE. 

Figure 6.36 is the structure of a parallel MSK-type receiver, where perfect carrier 
recovery and symbol timing are assumed, that is, the demodulation is coherent. This 
receiver works for binary CPM schemes with h = 112 because these schemes have 
cos[@ (t , a)] eye patterns that have maximum open at t = (2n + 1)T, n = 0 , l :  2, . . . . 
Figure 6.37 is the cos[lP(t, a)] eye pattern for 3RC, h = 112 CPM [36]. If the filter 
a( t )  is an ideal low-pass filter, the output of the upper arm of the receiver is exactly 
cos[@(t, a)] and the output of the lower arm is exactly sin[@(t7 a)]. The eye pattern 
of sin[Q(t, a)] is the same as cos[@(t ,  a)] but shifted by T in time. Therefore the 
receiver samples the upper arm and lower arm at t = (2n + l)T and t  = 2n,T1 
alternatively. The "decision logic" observes the sampled signals for a length of i% 
symbol intervals and makes an optimum decision on one symbol [9. p. 2971. The 
decision logic also perfoms differential decoding (for differential encoded data) and 
multiplexing. The filter a (t) can be optimized to minimize the average symbol error 
probability [34,37]. 

As in the MSK case, the parallel receiver in Figure 6.36 can be replaced by an 
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Figure 6.35 Upper bounds on Pb for MSK with multiple-symbol noncoherent detection. From [33]. 
Copyright @ 1993 IEEE. 

equivalent serial MSK-type receiver (Figure 6.38). For MSK, the filter a ( t )  in the 
parallel receiver is [38] 

and the corresponding serial filters are 

2 fi 
- { '"l(2T)' hl( t )  - 

It1 5 T 
otherwise 

1 - - s i n ( )  ( t l s T  
otherwise 
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Figure 6.36 Parallel MSK-type receiver for binary CPM with h = 1/2. From [35]. Copyright @ 1985 
IEEE. 
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Figure 6.37 cos@(t, a) eye pattern for parallel MSK-type receiver for binary 3RC. h = 1/2, scheme. 
From [36] Copyright @ 1982. AT&T. All rights reserved. Reprinted with permission. 
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(These two filters are denoted as hm1(t) and hmQ (t) in Figure 5.15, Chapter 5. Their 
frequency responses are shown in Figure 5.17.) The above filters in fact satisfy the 
following relations 

hl ( t )  = a( t )  cos(."f-) 
2Tt = -a(t)  sin(3) 

It is therefore reasonable to assume that the serial receiver could also be used for 
general h = 1/2 binary CPM with the filters defined according to (6.56), and a ( t )  the 
corresponding filter for the parallel receiver. Note that the local reference frequency 
of the serial receiver is f, - 1/4T. Thus the lowpass signals in the quadrature arms 
of the serial receiver are cos[@(t, a) + g] and sin[@@, a) + g] before the filters. 
The eye pattern of the sum of these two signals is shown in Figure 6.39 for binary, 
h = 1/2,3RC scheme [35]. It can be seen that the serial eye pattern has open eyes at 
every t = nT. The sum of these signals are then sampled at every t  = nT and sent 
to the decision logic for decision making and differential decoding if needed. 

It was shown that the serial and parallel receivers have equal performance, as- 
suming perfect phase and time synchronization (351 Figure 6.40 shows the error 
probability P in estimating the phase node 0, for some binary CPM schemes with 
optimum filters in the MSK-type (parallel or serial) receiver. The bit error probability 
is about 2P 19, p. 2991. 

Serial and parallel MSK-type detection with phase errors and timing errors were 
compared for partial response CPM. It was found that the serial MSK-type receiver 
is less sensitive to phase errors while the parallel MSK-type receiver is less sensitive 
to symbol timing errors. Assuming that it is easier to obtain an accurate timing than 
phase synchronization, the serial receiver has advantage over the para1 lel one. 

6.5.8 Differential and Discriminator Demodulator 

Besides the optimum and suboptimum receivers described so far in this chapter, there 
exists simple noncoherent receivers. Figure 6.4 1 shows two such simple noncoherent 
receivers, differential and discriminator receivers for binary partial response CPM (91. 
In the differential receiver the output of the filter A( f )  is a signal with time-varying 
amplitude R(t, a) and a distorted phase $(t,  a). The output of the differential detec- 
tor would then become 

y ( t )  a R(t, a)R(t - T ,  a )  sin A$@, T ,  a) 

where A$@, T, a) =$(t,  a) - +(t - T, a) is the phase difference between the current 
symbol and the previous symbol. The eye pattern of this signal has open eyes at every 
t = kT. This signal is sampled and a hard decision is made on the sample. 

In the case of the discriminator, the output ofthe discriminator is the derivative of 
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Figure 6.38 Serial MSK-type receiver for binary CPM with h = 1/2. From 1353. Copyright @ 1985 
IEEE. 

Figure 6.39 The eye pattern for serial MSK-type receiver for binary, h = 1/2,3RC scheme. From [35]. 
Copyright @ 1985 IEEE. 
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15 SNR 

Figure 6.40 The error probability P for estimating phase node On for some CPM schemes with optimum 

filters in the MSK-type (parallel or serial) receiver. The bit error probability is about 2P. From [9, p. 3201. 
Copyright @ 1986 Plenum. 
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the phase $(t,  a). An integrate-and-dump filter following the discriminator produces 
a phase difference A@@, T, a) which is slightly different fkom A$@, T, a) 19, p. 2691. 
The hard decision detector decides S,- = 1 if AQ (t , T, a) >O, 5,- = - 1 
otherwise. 

The filter A( f )  is chosen as a raised cosine (LRC) type in [9, p. 2651. As to the 
error performance of these two receivers, it is very difficult to analyze due to the 
nonlinearity. Some numerical results are available in (9, section 7.5.31. It is expected 
that the simple receivers would have losses in error performance. However, for good 
combinations of modulations and differential detectors or discriminators, the loss at 
error rate 1W6 is only about 2 dB compared to coherent MSK. Figures 6.42 and 
6.43 show some numerical results for binary CPM schemes, where 1 RCRRC means 
that the CPM scheme is 1RC and the receiver filter A( f )'s impulse response is 2RC 
(for LRC filter, the longer the L, the narrower the bandwidth required). Differential 
detection is best suited for schemes with h = 112, so that the index in Figure 6.42 is 
1/2. It is seen fiom Figure 6.42 that lRC/3RC is quite poor and 1 RCRRC is the best, 
with a loss of about 2.5 dB over coherent MSK at Pb = The error performance 
of discriminator detection of h = 1/2 is very close to that of differential detector. 
Figure 6.43 shows some results for discriminator detection with h = 0.62. It turns 
out this index value makes the discriminator detection slightly better than differential 
detection: the loss of I RC/2RC is about 2 dB over coherent MSK at Pb = 

Sequence detection can also be applied to the differential and discriminator re- 
ceivers since the memory in the continuous phase also can help in noncoherent re- 
ception. Receivers that use Viterbi processing following the discriminator p9-4 I ,  431 

or differential detector 13,41431 were proposed. 

6.5.9 Other mpes of Demodulators 

In this section we present some less known, but maybe potentially useful CPM de- 
modulators. 

MSK and OQPSK are two well-known modulations that can be interpreted as 
a set of time/phase-shifted AM pulses. Laurent proved that any constant amplitude 
binary phase modulation can be expressed as a sum of a finite number of time limited 
amplitude modulated pulses (AMP) 1441. Based on this notion, Kaleh developed a 
coherent receiver using the Viterbi algorithm for binary partial response CPM [45]. 

The receiver's complexity is nearly the same as the old Viterbi receiver. However, the 
complexity can be reduced by using fewer matched filters and consequently smaller 
number of VA states while maintaining a near optimum error performance. A linear 
filter receiver can also be derived from the AMP representation. An example given 
in 1451 is the binary GMSK with BT = 0.25 and h = 0.5, for which the simplified 
VA receiver only needs two matched filters and a four-state Viterbi processor, while 



Digital Modulation Techniques 

Figure 6.4 1 Differential (a) and discriminator (b) receiver for binary CPM schemes. From [9]. Copyright 
@ 1986 Plenum. 

the error performance loss is only about 0.24 dB. The error performance of the linear 
receiver is also only slightly worse than the simplified VA receiver. 

The optimum ML coherent and noncoherent demodulators discussed in Sections 
6.5.1 and 6.5.2 can be simplified. The idea is to use a matched filter that matches 
to the average of all signals having the same first symbol a l .  Thus the total number 
of filters (or correlators) is reduced by a factor of IMN-'  where N is the length in 
symbols of the observation. This suboptimum receiver is called average matched 
filter (AMF) receiver and is given in (461. However, the error performance of this 
type of AMF receiver is not good since the received signal is poorly matched. For 
example, the loss of CPFSK at Pb = lo-* is about 3 dB 121,461. Another type of 
AMF receiver is proposed in 191 for partial response CPM. The impulse response 
of the filters is the average over all symbols except the prehistory and the decision 
symbol, where prehistory refers to the L - 1 symbols before the decision symbol. 

In Section 6.5.4 we have explored the reduced state Viterbi demodulator. On 
the other hand, complexity reduction of the ML demodulator can be achieved by 
using search algorithms other than the Viterbi algorithm. Sequential algorithms are 
a class of suboptimum algorithms, which search through the state tree or trellis along 
only one path. The best known sequential algorithms are the Fano algorithm and the 
stack algorithm [ 2 q  Other algorithms compromise between the Viterbi algorithm and 
the sequential algorithms, thus maintaining most of the optimum error performance 
while reducing the computational complexity. Refer to (471 for a survey of search 
algorithms. 

In the above discussion, either we assume that the demodulation is coherent (i.e., 
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Figure 6.42 Pb for differential detection of  1RC with h = 1/2. From [9, p. 2731. Copyright @ 1986 
Plenum. 
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Figure 6.43 Ph for discriminator detection of  IRC with h = 0.62. From [9, p. 2741. Copyright @ 
1986 Plenum. 
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the received carrier phase is completely known (synchronized) to the receiver), or we 
assume that the demodulation is noncoherent (i.e., the received carrier phase is com- 
pletely unknown (random) to the receiver). The complete randomness of the phase 
error in a noncoherent case is manifested by assuming it to have a uniform distri- 
bution in [O,2a]. The practical situation of a coherent demodulator is in between. 
The best we can hope is that the carriers are synchronized with a phase error that 
fluctuates around a mean value zero. To deal with this situation, partial coherent re- 
ceivers are considered in 191 where the phase error is assumed to have a PDF other 
than uniform, with various degrees of randomness. 

Before we end this section, we would like to point out that demodulation for 
CPM has been, and still is, an active area of research. New ideas about CPM demod- 
ulator are expected to appear in the literature fiom time to time in the future. 

6.6 SYNCHRONIZATION 

Perhaps synchronization is the most difficult part of the CPM technique. Synchro- 
nization techniques for special CPM cases, like MSK, are relatively mature and in 
practical use. In this section we will discuss synchronizers for general CPM schemes. 
Some are extended fiom the MSK synchronizer and others are based on new ideas. 
Research on this subject is still active. New results are expected to appear in the 
future. 

6.6.1 MSK-wpe Synchronizer 

The synchronization technique for MSK (481 (Figure 5.11) was first generalized by 
Lee [49] to include M-ary data and any rational modulation index, but the frequency 
pulse is still IREC. This synchronizer was further generalized by Sundberg 19) to 
be useful for any CPM schemes with rational index. Figure 6.44 is the generalized 
synchronizer. Now we explain how it works. The modulation index is assumed 
rational as h = k l / k 2 ,  where kl, k2 are nonzero integers. The nonlinearity in the 
synchronizer will raise the received signal to the power of k2 .  

and one of the resultant components is [SO] 

12Es'T1 2k2-1 k2/2 cos[2nk2fct + k 2 8 ( t ,  a)]  

The amplitude of this signal is not important in the following discussion. What is 
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Figure 6.44 CPM synchronizer generalized from MSK synchronizer. After [9]. 

important is that this is a CPM signal with carrier frequency kz f, and phase 

which has an integer index h' = kl. Recall that in Section 6.2.1, we state that when 
h' is an integer the PSD of the CPM signal contains a discrete part. The discrete 
frequency components appear at 

f = {  k2fc k2fc =k f 2 k / 2 T ,  (2k + 1)/2T, k = 0 , 1 , 2  ,..., foroddh' 
k = 0 ,1 ,2 ,  . .. , for even h' 

Figure 6.45 illustrates such a scenario, where the spectrum is drawn in the baseband. 
Combining even and odd h' cases together, we can see 

The two phase-lock loops (or narrow-band bandpass filters) in Figure 6.44 can 
select any pair of frequencies kz f, f k / 2 T .  The output of the mixer contains the 
sum and the difference of these two frequencies: 2k2 f, and k/T .  Since in most cases 
the strongest components appear at ht/2T, thus the frequencies selected by the PLLs 
are usually k2 fc  f hr/2T. The difference frequency would be hf /T  = k l / T .  The 
high-pass filter and the low-pass filter pick up one of them. The frequency dividers 
divide two fiequencies to produce f, for the carrier and 1/T for the symbol timing. 

The recovered carrier has a phase ambiguity of 27r/2k2 = n/kz  because the 
received carrier frequency f, has been multiplied by 2k2 in the recovery process. The 
symbol timing phase ambiguity is 2x/klfor similar reasons. Recall that if h = 2 q l p  
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h' even integer 
I 

I hs odd integer 

Figure 6.45 Discrete frequency components of CPM when h is an integer. From [9] .  Copyright a I986 
Plenum. 

where q and p are integers with no common factors, then there are p phase states in 
the signal. A phase shift of 2?r/p merely renumbers the phases states. The trellis 
remains the same. Thus the phase of the carrier only has to be known modulo 27r/p 
if the Viterbi receiver is used. This greatly reduces and in most cases eliminates the 
effect of carrier phase ambiguity. For example, in MSK, h = 112 = 214, p = 4, 
kl = 1, kz = 2, the carrier phase ambiguity is r / k Z  = ~ / 2 ,  but the Viterbi processor 
can tolerate a phase shift of 27r/p = 7r/2, thus the effect of carrier phase ambiguity 
is completely eliminated. However, optimum demodulation of MSK need not be 
performed by the Viterbi processor, rather, it can be performed by the quadrature 
receiver depicted in Figure 5.10. The carrier and the symbol timing are recovered 
by the circuit in Figure 5.1 1. It has a phase ambiguity of T which can be resolved 
by differentially encoding the data. The symbol phase ambiguity must be resolved 
in some way if kl + 1. If kl = 1, like in MSK, there is no phase ambiguity. 
Performance analysis results of the synchronizer are available in p] and [s I]. 

There are some problems with the MSK-type synchronizer. First, both carrier 
phase and symbol timing are recovered from the same outputs of the two tracking 
loops. As a result, the equivalent bandwidths for both carrier recovery and symbol- 
timing recovery are the same. For carrier recovery, the bandwidth of the PLLs cannot 
be made arbitrarily small due to factors such as phase noise and fading. As a result, 
the PLL bandwidth may be too wide for symbol-timing recovery. The recovered 
clock may suffer from a large level of phase jitter. Furthermore, since the mean 
time between cycle slips decreases as the PLL bandwidth is increased, the recovered 
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timing may have an undesirable rate of cycle slipping. The second problem of the 
MSK-type synchronizer is the difficulty of acquiring signals with a large Doppler 
shift with respect to the data rate. If the loops are to be swept, then particular care 
must be taken so that the two loops do not lock on to the same frequency. A signal 
dropout problem also exists in the MSK-type synchronizer. Certain data sequences 
may lead to the transmission of only one tone, so that one of the loops loses lock and 
returns to its rest frequency. This situation produces both carrier and clock tracking 
errors. Finally, the MSK-type synchronizer is not easy to be realized in VLSI, which 
reduces its practical significance. 

6.6.2 Squaring Loop and Fourth-Power Loop Synchronizers 

To overcome some of the shortcomings of the MSK-type synchronizer, a squaring 
loop and a fourth-power loop synchronizer were proposed by [52]  for binary CPM 
schemes with h = 1/2 (Figure 6.46). These two synchronizers are for carrier recov- 
ery only. The timing recovery must be done separately. Thus its bandwidth can be 
selected independently of the carrier recovery bandwidth. 

Figure 6.46(a) is the squaring loop synchronizer. Since we assume that the re- 
ceived CPM is binary with h = 1/2 = k l / k z ,  according to the argument in the 
previous subsection, the squaring operation generates a CPM signal at 2 f, with 
h' = k1 = 1. This leads to discrete spectral lines at 2 fc f (2k  + 1)/2T, k inte- 
ger, with 2 fc k 1/2T the strongest. The lines are shifted to 2 fc by multiplication 
with C O S [ T ( ~  - Td) /T] ,  where Td is the symbol timing delay (error). It is easy to see 
that when Td # 0, the shifted spectral lines cannot be at 2 fc exactly. Therefore the 
prior knowledge of the symbol timing is essential to this synchronizer. It  is shown in 
[52]  that the phase error variance of this synchronizer increases with the increase of 
Td. Other than that, the squaring loop's jitter performance is essentially the same as 
the MSK-type synchronizer, but the latter's practical limitations are eliminated. Most 
importantly, the squaring loop leaves the symbol timing to be recovered separately. 
The timing recovery bandwidth can be made much smaller than the carrier recovery 
bandwidth. Consequently the rate of clock slips can be reduced. The phase ambigu- 
ity of the squaring loop is n due to the squaring operation, which can be eliminated 
by differential encoding the data symbols. 

Figure 6.46(b) is the fourth-power loop synchronizer. Afler the fourth-power 
nonlinearity, the signal contains a component cos[8n f,t + 4@(t,  a)] which has an 
even index h' = 2. Thus the discrete lines are at 4 f, + k/T,  k integer. Setting 
k = 0, we obtain a line at 4fc which is strong for most of the popular binary, h = 1/2 
CPM schemes except MSK, for which the magnitude of this spectral line happens 
to be zero 152, Figure 41. Thus this loop will not work for MSK. The advantage of the 
fourth-power loop is that it does not require prior knowledge of the symbol timing. 
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Figure 6.46 Squaring loop and fourth-power loop synchronizers for binary CPM with h = 1/2. From 
f521 Copyright @ 1989 IEEE. 
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As a result, it allows carrier phase and symbol timing to be recovered sequentially. 
A faster acquisition can be achieved. 

The results in [52, Fig. 4]show that the fourth-power loop is inferior to the squaring 
loop at lower SNR and the situation is reversed at higher SNR. The two loops were 
evaluated with several popular binary h = 112 CPM schemes, including 2RC, 3RC, 
GMSK, TFM, and DMSK (duobinary MSK). It was found that the best performance 
(phase variance) is achieved with DMSK. 

6.6.3 Other mpes of Synchronizer 

The synchronizers described above are relatively simple. More sophisticated syn- 
chronizers are reported in the literature. A synchronizer using the maximum a pos- 
teriori (MAP) technique to jointly estimate the carrier phase and symbol timing for 
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I MSK 1 0.78 1 1.20 1 2.76 1 6.00 1 
I TFM 1 0.52 1 0.79 1 1.02 1 1.37 I 

Table 6.2 GMSK percentage bandwidth. 

MSK is reported in Is,]. A MAP symbol synchronizer for partial-response CPM is 
proposed in [MI. More synchronizers are mentioned in 191. All these synchronizers 
are too complicated. More research is needed to make them easier to implement in 
practice. 

6.7 GAUSSIAN MINIMUM SHIFT KEYING (GMSK) 

GMSK was first proposed by Murota and Hirade for digital mobile radio telephony 
[3]. Currently GMSK is used in the U.S. cellular digital packet data (CDPD) system 
and European GSM system 155. p. 2651. The wide spread use is due to its compact 
power spectral density and excellent error performance. 

GMSK, as its name suggests, is based on MSK and is developed to improve 
the spectral property of MSK by using a premodulation Gaussian filter. The transfer 
function of the filter is 

where Bb is the 3-dB bandwidth. We have defined the frequency pulse g ( t )  of GMSK 
in (6.8). This g ( t )  can be generated by passing a rectangular pulse rec ( t /T )  through 
this filter (56, p.1831. 

The power spectral density of GMSK is shown in Figure 6.47, where BbT is 
a parameter. The spectrum of MSK (BbT = 00) is also shown for comparison. It 
is clear that the smaller the BbT, the tighter the spectrum. However, the smaller 
the BbT, the farther the GMSK is from the MSK. Then the degradation in error 
performance using an MSK demodulator will be larger. We will see this shortly. A 
fact that needs to be pointed out is that the spectrum of GMSK with BbT = 0.2 is 
nearly equal to that of TFM. Table 6.2 shows the bandwidth (normalized to symbol 
rate) for the prescribed percentage of power within the bandwidth. 

The modulator for GMSK currently used in CDPD and GSM systems is of the 
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Figure 6.47 Power spectra of GMSK. From [ 3 )  Copyright 198 1 IEEE. 

type of Figure 6.13, where the filter must be a Gaussian filter and the FM modulator 
must be an MSK modulator (that is, an lREC modulator with h = 0.5). Of course 
other types of CPM modulators can also be used for GMSK. 

The demodulation for GMSK of course can be done using all types of demod- 
ulators that we described in this chapter. The demodulator suggested in pi is the 
Costas loop type shown in Figure 6.48 where demodulation and carrier recovery are 
combined. Clock recovery is still separated. Figure 6.49 is the digital implementa- 
tion of Figure 6.48. In Figure 6.49, two D flip-flops act as the quadrature product 
demodulators and both the exclusive-or logic circuits are used for the baseband mul- 
tipliers. The mutually orthogonal reference carriers are generated by the use of two 
D flip-flops. The VCO center frequency is then set equal to four times carrier center 
frequency. This circuit is considered to be especially suitable for mobile radio units 
which must be simple, small, and economical. 

The theoretical BER performance of the coherent GMSK is of course described 
by the expressions given in Section 6.3.1. Figure 6.50 shows some measured BER 
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Figure 6.48 Block diagram ofcostas loop demodulator for GMSK. From 133. Copyright 198 1 IEEE. 
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Figure 6.50 Measured BER of GMSK. From [3]. Copyright @ 198 1 IEEE, 

results given in [3], where Bi is the 3-dB bandwidth of the predetection Gaussian 
filter. BiT = 0.63 is the optimum value found. From the figure we can see that 
the degradation of  GMSK relative to MSK is about 1 dB for BbT = 0.25. Also the 
spectrum with BbT = 0.25 is quite tight, so this bandwidth is considered a good 
choice. The measured BER curves can be approximated by the following equations 
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where 
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0.68. for GMSK with BJ = 0.25 
0.85, for simple MSK (BbT --+ m) 

6.8 SUMMARY 

In this chapter we have studied the continuous phase modulation. We first defined 
the CPM signal. Then various important frequency pulses, including LREC, LRC, 
LSRC, TFM, and GMSK were presented. Both their mathematical expressions and 
waveforms were given. The phase, phase state, phase tree, phase trellis, state and 
state trellis of the CPM signal were studied in great detail since the information sym- 
bols are imbedded in the phase, and demodulation is based on the phase tree or the 
state trellis. Steps to calculate power spectra1 density of CPM were given, but the 
derivation was left in Appendix A. PSDs of some of the important CPM schemes 
were presented. The influence of pulse shape, modulation index, and a priori prob- 
ability distribution on the PSD was demonstrated using examples. It was found that 
unlike pulse shape and modulation index, a priori probability distribution has no 
significant impact on the spectrum. The formula of the distance of CPM was de- 
rived. The error performance was related to the distance, particularly, the minimum 
distance of the CPM signal. It was found that the error performance is mainly de- 
termined by the minimum distance. Thus the minimum distance is often used as an 
indicator of the error performance of a CPM scheme. In the section on modulators, 
we covered direct modulator, quadrature modulator, serial modulator, and all-digital 
direct modulator. The great challenge of CPM lies in the design of demodulators. 
We studied optimum ML coherent and noncoherent demodulators which detect one 
symbol based on observation of several symbols. We described the Viterbi demod- 
ulator which is an ML detector based on the state trellis, The Viterbi demodulator 
detects the signal in a convenient recursive fashion, thus it allows the data stream to 
be continuous without frame structure. Demodulators that simplify the Viterbi detec- 
tor, either based on a simpler trellis or based on a smaller number of matched filters 
were described. MSK-type demodulators, either parallel or serial, were discussed. 
They are very practical in terms of their simple structures, even though they offer 
slightly inferior error performance and are mainly suitable for binary CPM schemes 
with h = 1/2. The still simpler noncoherent differential and discriminator demod- 
ulators were also studied. of course the price paid is the degradation in error per- 
formance, or power efficiency. However, when receiver complexity is a more severe 
problem than transmission power, they are not a bad choice. The synchronization 
problem is also a big challenge of CPM techniques. We described the popular MSK- 
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type synchronizer and newer squaring loop and fourth-power loop synchronizers. 
Other complex synchronizers were also mentioned. Finally, we discussed GMSK in 
detail in a dedicated section due to its importance in practical use. 

Multi-h phase modulation is developed from single-h CPM that we have just 
studied. It offers even better performance, but with a greater compiexity. We will 
study the multi-h phase modulation in the next chapter. 
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Chapter 7 

Multi-h Continuous Phase Modulation 

Multi-h continuous phase modulation (MHPM) is a special class of CPM where the 
modulation index h is cyclically changed for successive symbol intervals. Cycli- 
cally changing indexes leads to delayed merging of neighboring phase trellis paths, 
which in turn increases the minimum Euclidean distance and improves the error per- 
formance. Binary multi-h CPFSK schemes were first proposed by Miyakawa et a1 
[ lb  and were generalized by Anderson, De Buda, and Taylor (2-41. Recently, MHPM 
technique has received a great deal of attention for application in satellite communi- 
cations due to its power and bandwidth efficiency which are even better than that of 
CPM 151. 

In this chapter we will cover all basic aspects of MHPM in great detail. However, 
the treatment here is limited to an AWGN channel as we did for previous chapters. 
The application of MHPM in fading channels will be treated in Chapter 10. Com- 
bined MHPM and convolutional codes are beyond the scope of this book and are not 
covered. 

We define MHPM signal and study its phase and phase trellis properties in Sec- 
tion 7.1. Its power spectral density is studied in Section 7.2. The Euclidean distances 
of MHPM signals and their error probabilities are discussed in Section 7.3. MHPM 
modulators are basically the same as those for CPM, which is briefly mentioned in 
Section 7.4. The MHPM demodulators and synchronizers are more complicated than 
those of CPM. They are presented in Section 7.5. New developments of MHPM are 
discussed in Section 7.6. Summary of this chapter is given in Section 7.7. 

7.1 MHPM SIGNAL, PHASE TREE, AND TRELLIS 

The expressions for MHPM are essentially the same as those for CPM ((6.1) to (6.3)) 
except that h is replaced by hk. That is 
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where the phase is 
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where T is the symbol period and 

The M-ary data a k  may take any of the h.I values: *I, +3? . . . , &(M - 1). The index 
hk cyclically changes from symbol to symbol with a period of K, but only one index 
is used during one symbol interval, that is, h l ,  h2, ..., h K ,  hl hz ,  ..., h K ,  and so on. 
It is normally assumed that the set of modulation index is rational with a common 
denom inator 

where pi , i = 1, . . . , K and q are small integers and all hi values are multiples of 1 /q.  
Note that q in denominator of (7.4) has no relation to q( t )  in (7.3). For bandwidth 
considerations, hi is usually chosen to be smaller than one. The index set HK is also 
called a multi-h phase code since it controls the signal phase. 

As in the case of single-h CPM, the frequency pulse g ( t )  can be full response 
or partial-response. It can be any one of the smooth waveforms defined in Section 
6.1.1. In addition, we still keep the convention that 

This ma1 tes the maximum phase change of the signal to be (M - 1) hir  for the period 
of g ( t ) .  Usually g ( t )  is a pulse defined in (0, LT] and is zero outside this interval. 
Thus we have q(LT)  = J:* g(t )dt  = 112. 

The definition of instant phase and cumulate phase of MHPM are similar to 
those of single-h CPM (see Section 6.1.2). During interval kT < t < (k + 1)T the 
instant phase of a MHPM signal with a g ( t )  of length LT is 
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the cumulate phase is 

Ok = 1 T Chii 1 (mod 27r) 

and the total phase is the sum of the above two 

A simple but very important MHPM scheme is the lREC MHPM. Since g ( t )  = 
1 /2T for [O, T ]  and zero elsewhere, B ( t ,  ak) = rhkak  (t - kT)/T and the signal in 
[ k T ,  (k + 1 ) T ]  is 

The phase change at the end of each interval is a k r h k .  
As in the single-h CPM case, there exists a phase tree for MHPM whether the 

indexes are rational or irrational. If the indexes are rational, the phase tree can be 
collapsed into a periodic phase trellis. The difference of using multiple indexes lies 
in the phase changing slopes in the phase tree and delayed path merge in the trellis. 
Figure 7.1 compares the phase trees of two binary CPFSK schemes with single-h 
and Hz = ( 2 / 4 , 3 / 4 )  side by side. The absolute value of the phase tree slope of 
the single-h CPFSK is constant, which is hr/T,  whereas it is x / 2 T  and 37r/4T 
alternatively for the H2 CPFSK. Figure 7.2 shows the phase trellises for h = 1/2 
and h = 3 / 4  single-h binary CPFSK. The first merges happen at t = 2T (see the 
bold line paths). Figure 7.3 shows the trellis of Hz = (2/4,3/4) binary CPFSK 
scheme where the first merge occurs at t = 3T. It is this delayed merge that gives 
the MHPM larger minimum Euclidean distance between neighboring paths that in 
turn gives rise to a better error performance. 

Recall that we defined state of CPM as 

and the Viterbi demodulator relies on the state trellis (see, for example, Figure 6.5). 
This definition is also applicable to MHPM and a state trellis is generally needed 
for the Viterbi demodulator. However, as we state in Section 6.1.1, for full-response 
MHPM, the phase trellis is equivalent to the state trellis for explaining and designing 
the Viterbi demodulator. Therefore the phase trellis of full-response MHPM is often 
called state trellis in the literature. For partial-response MHPM, a state trellis like 
the one for single-h CPM is needed (see Figure 6.5). 

Historically, multi-h CPFSK, which is full-response with a rectangular frequency 
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Figure 7.1 Phase trees for (a) single-h (112) binary CPFSK, (b) multi-h (214,314) binary CPFSK. From 
[53. Copyright @ 1991 IEEE. 

pulse, was first studied and the majority of the research results in the literature were 
about it. In the context of MHPM, we prefer to name it as lREC MHPM. In the fol- 
lowing, we will present the results for both IREC MHPM and other full-response or 
partial-response MHPM with the emphasis on the IREC MHPM. 

For MHPM with Bk given in (7.7) and K indexes given in (7.4), we have 

It is clear that cumulate phase Bk is always some multiple of ~ / q .  The maximum 
number of distinct phase states Bk in the trellis is therefore = 2x/(.rr/q) = 2q. 
However, it was shown that the number of phase states at any t = kT is q ,  even 
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Transition for ai = 1 ---- Transition for ai= - 1 

T 2T 3T 4T 
6T t 7l' 

(a) h = 1/2 

V 

0 T 2T 3T 4T ST 6T t TT 

(a) h = 314 

Figure 7.2 Phase trellis for (a) h = 1/2 binary CPFSK, (b) h = 3/4 binary CPFSK. From 151. Copy- 
right @ I991 IEEE. 
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Transition for a i = 1 ---- Transition for a;= -1 

Figure 7.3 Phase trellis for H2 = (2/4,3/4) binary CPFSK. From [51 Copyright @ 1991 IEEE. 

though the total number of phase states may be q or 2q [6,7]. Here a rigorous proof 
is given. To simplify the proof without loss of generality, we assume that the time 
index i starts at i = 1 

where pi could be an even or odd number. 
k - L  k - L  First we prove that if Ei=, pi is odd, xi=, piai must be odd. This conclusion 

can be proved as follows. First this is apparently true for all ai = 1 or all ai = - 1. 
k - L  In general, for any set of ai E {f 1, k3: ..., f ( M  - I)}, if Ci-, - pi is odd, then 

there must be an odd number (say, ATodd) of odd pis and any number (odd or even, 
k - L  k - L  say, ATe,,,) of even pis in xi=, pi. In the sum xi=, piai ,  it is obvious that a term 

generated by an even pi is always even. A term generated by an odd pi is always odd 
k - L  since pi and ai are both odd. Thus in the sum Ei=, pia.i, the subsum of those N,,,,, 

terms generated by even pis is even; the subsum of those ATodd terms generated by 
odd pis is always odd since each term is odd and the number of such terms is also 

k - L  odd. Thus the total sum Ci=, pia,i is odd. 
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k - L  k - L  Likewise, we prove that if xi=, pi is even, xi=, piai must be even. In this 
case, the number of odd pis (Nodd)  must be even. The subsum of Nodd odd piai 
terms is even since each term is odd but the number of terms is even. Thus the total 

k - L  sum xi=, piai is even. 
k- L When x i = ,  piai is odd, it takes values o f f  1, f 3 ,  ... and Bk = f r/q, f 3 ? ~ / q ,  

k - L  ...; when x i = ,  piai is even, it takes values of 0, f 2, k4, ... and Bk = 0, f 2 i ~ / q ,  
1t4a/q, . . . . We can convert the phases into [O,2n] and summarize the above results 
as follows. 

k - L  2a 47r 2n(q - 1) ek = 0 ,  -, -, ..., , A~ = z~i even (7.11) 
Q 9 4 i = l  

In either case, the number of possible phases (mod 2 4  is q with a distance of 2 n / q  
between two adjacent phases. Thus at any t = kT, the number of possible phases is 
4. 

The number of total phase states ( N s )  in the phase trellis could be 2q or q. If 
not all pis are even, Ak is odd at some times and even at other times, then the phase 
can take values in (7.10) and (7.11) (i.e., Ns  = 29). If all pis are even, Ak is even 
all the time, then the phase can take values in (7. l 1 ) only, i.e., N, = q. The first case 
is the usual case since usually q is chosen as a power of 2, thus not all pis are even. 
Otherwise if all pis are even, q can be reduced by a factor of two in defining HK 
(see (7.4)), still resulting in the case that "not all pis are even." The second case, 
which is not the usual case, happens when q is an odd number. We summarize the 
conclusions as follows. 

If not all pi s are even, Ns = 29 (7.12) 

If all pis are even, N, = q (7.1 3) 

Some examples which support the above theory are given here. An example for 
the first case (not all pis are even) is H2 = ( 2 / 4 , 3 / 4 ) ,  starting from k = L + 2, 
Ak = 5,7,10,12,15,17, . . . . The values of Ak are odd or even. ilr, = 2q = 8 (Figure 
7.3). Another example for the first case is H3 = (1/8,2/8.3/8). starting from 
k = L+3, Ak = 6,7 ,9 ,12 ,13 ,  ..... ThevaluesofAk areodd oreven, I?.', = 29 = 16. 
The trellis is shown in Figure 7.4. Finally, an example for the second case (all pis are 
even) is Hz = (2/5,4/5). Starting from k = L + 2, Ak = 6,8,12,14,18 ..... All 
values of Ak are even in this case, thus Ns = q = 5. The trellis is in Figure 7.5. 



0 T 2T 3T 4T ST 6T 
t 

Transition for ai = 1 - - - -  Transition for a;= - I  

Figure 7.4 Phase trellis for H3 = (l/8,2/8,3/8) binary CPFSK. 
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Transition for ai = 1 ----  Transition for ai= - 1 

Figure 7.5 Phase trellis for Hz = (2/5,4/5) binary CPFSK. 

It is natural to think that the period of the trellis (T') is KT since K modulation 
indexes are cyclically rotated. In fact Tp could be KT or 2KT, depending on a 
quantity related to the modulation indexes. 

T, = KT,  I'= Cpi even 

Here is the proof. Assume the trellis starts from k = 1. When r is even, from (7.1 1) 
we can see that OK = 0,27r/q, 4 ~ 1 4 ,  . . . , 2 n ( q  - l ) / q .  Starting from this point, 

K  after K symbols, O K  will increase to @2K = O K  + P i a i  Since r is even, - # 

from (7.11) we can see that the increment EL, piai is one of the following values, 
0,2n/q, 4x/q, . . . , 2 n ( q - l ) / q .  The resulting 62K is also one of the same set of values 
(mod 2a). Thus the period is KT. When I? is odd, from (7.10) we can see that OK = 
r / q ,  3 ~ / q ,  5 7 ~ / q ,  ..., (2q  - l ) r / q .  Starting from this point, after K symbols, OK will 

K increase to 02K = O K  + piai. Since r is odd, from (7.10) we can see that 
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K the increment xi=, piai is one of the following values, r / q ,  3n/q,  5 7 ~ / q ,  ..., (2q  - 
l).rr/q. The resulting 02K is one of the values in (7.11) (mod 2a). Only after next 
K symbols, the phases could become the values in (7.10). Thus the period is 2KT. 

Again we can use Figures 7.3,7.4, and 7.5 to verify the periods of phase trellis. 
In Figure 7.3, K = 2, r = 5 (odd), the period Tp = 2KT = 4T . In Figure 7.4, 
K = 3, r = 6 (even), the period Tp = KT = 3T. In Figure 7.5, K = 2, r = 6 
(even), the period Tp = KT = 2T. 

Note that since in the derivation we did not put any constraint on L, the length 
of the frequency pulse, (7.11) to (7.15) are applicable to M-ary MHPM with any L 
values. In other words, they are applicable to both fill-response and partial-response 
M-ary MHPM schemes. They are also applicable to single-h CPM since it is just a 
special case of MHPM. Figure 7.2 are two examples for single-h CPM. Their number 
of phases and length of periods also satisfy the above four expressions. 

As we pointed out in Chapter 6, Ok is in general not the total phase at time kT. 
However, if L = 1 and in addition f, is an integer multiple of symbol rate, and Bk is 
the total phase at t = kT, thus the initial phase of the kth symbol interval. 

Another important parameter of the phase trellis is the constraint length which 
is the minimum number of symbol intervals over which any two paths remain un- 
merged. The constraint length determines the minimum Euclidean distance which in 
turn determines the error probability A set HK cannot have constraint length longer 
than K + 1, since a merge is always possible over K + 1 intervals. For instance, data 
(K + 1)-tuples ( 1 ,  -1, . .. , - 1) and (- 1, ...? - 1, I ) ,  where - 1, ... , - 1 indicates K 
successive - Is and that corresponding modulation indexes are (hl  , h2,  . . . , hK , hl ), 
represent two paths which diverge at the first symbol and merge at the last sym- 
bol. The first merger that occurs independently of the values of modulation indexes 
is called the first inevitable merger. It is clear from above that the first inevitable 
merger occurs at t = (K + l)T for full-response MHPM schemes. 

It was found that there exist sets H K  which can achieve the maximum attainable 
constraint length (K + 1) 14,141. A necessary and sufficient condition for the set 
to achieve the upper limit K + 1 is that the weighted sum (kl hl  + k2h2 + ... + 
kK h ,K)  must not be integer-valued for any integer K-tuple (kl , kZ: . . ., kK) with ki E 
{O, 1 ,2 ,  .. . , M - 1). Furthermore, if hi are multiples of 1 / q ,  then H K  can achieve 
the maximum constraint length only if q 2 MK. However, it has been shown that 
MHPM schemes exist that do not satisfy q 2 MK, but still offer significant gain 
over the best CPFSK schemes with comparable bandwidth and number of receiver 
states p]. 

For partial-response MHPM with K indexes and a g ( t )  of symbol duration, 
the first inevitable merger in the phase trellis occurs at t = (L c K)T [ 9 ]  Thus the 
constraint length of such a scheme cannot be longer than L + K. 
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7.2 POWER SPECTRAL DENSITY 

Similar to the calculation of the power spectral density of single-h CPM, there are 
three methods for computing the power spectral density of MHPM schemes: the di- 
rect method, the Markov chain method, and the autocorrelation method. See Section 
6.2 for general descriptions of these methods. For MHPM they need modifications. 

First we consider binary 1 REC MHPM (binary multi-h CPFSK). The autocorre- 
lation function has been analytically found in ( 1  01. It was shown in I 1. pp. 377-3781 that 
the autocorrelation function of a phase-modulated signal is the same as the real part 
of the characteristic function of the probability density function of the phase chang- 
ing variable @(t + r?  a) - @(t ,  a). Using this property, the autocorrelation function 
of binary 1REC MHPM was found as 

zE1 [$LI(-*hix, T ~ ~ + ~ x )  + SD(ahix,  xhi+lr) 
+(I - X )  C O S T ~ ~ X ] ,  for n == 0 
1 

R ( X )  = zEl (n;:: hi+j) [ 5  cos h i+n[D( -nh i~ ,   hi+,+^^) + ;D(xhix,  xhi+.+lx)] 

+- [ ~ ( r h i  + rhi+,x, xhis  + rhi+,) 
+D(rhi - rhi+,x, rh i x  -  hi+,)]] , for n = 1 ,2 ,  ... 

(7.1 6 )  
where x is the normalized time variable 

and 

A special case is the MSK ( K  = 1, h = 112) for which (7.16) becomes 

(1 - S)cos (%x)  + sin($x),  for n = 0 
x = { i n  + c o x  far n = 1 

0 , for n > 1 

which is the same as that derived in [12]. 
An analytical expression for the power spectral density can be found by taking 

the Fourier transform of (7.16). Note that since R(T)  will rapidly approach zero as n 
increases, it is sufficient to consider only a few symbol intervals. Figure 7.6 shows 
the autocorrelation function and power spectral density of the binary I REC MHPM 
scheme with H3 = {4/8,5/8,6/8), obtained using the above method. 



Digital Modulation Techniques 

Figure 7.6 Autocorrelation function (a), and power spectral density (b), of the binary lREC MHPM 
scheme with H3 = {4/8,5/8,6/8). From [lo]. Copyright @ 1985 IEEE. 

The numerical autocorrelation method for single-h CPM described in Chapter 
6 can also be generalized for MHPM. A guide line for this generalization is given in 
113, p. 1621. However, no detailed results are available. 

The direct method has been applied to binary IREC MHPM 141 and M-ary full- 
response MHPM [14]. This method is general and has ability to provide exact (via 
numerical integration) power spectral density. In this method, the power spectral 
density is given by 

where Q N T (  f )  is the direct Fourier transform of a NT second segment of the MHPM 
signal. The expectation is over the data modulation and the random initial phase 
angle. 

The work of I141 for PSD of M-ary full-response MHPM is based on the work 
for PSD of FSK in [IS]  where it is assumed that the random modulation waveform 
is selected in independent, identically distributed manner in each symbol interval. 
In attempting to apply the results of [ls] to MHPM, one faces the difficulty that the 
selection of modulation is not identically distributed, though independent, in each 
interval. This is because the hk index is cyclically chosen, and the allowable mod- 
ulating signals form different sets for different time indexes. A way out of this dif- 
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ficulty is to view the modulation as having a basic signaling interval of T' = KT 
seconds, thus the distribution on each super-interval is identical. Now there are A f K  
distinct waveforms to choose from. Based on this concept, the results of [is] can be 
applied directly to the M-ary full-response MHPM case. The one-side low-pass (or 
complex envelope) PSD is given by the following equations: 

where 

To evaluate the above we define 

where {a in ,  i = 1,2 ,  . . . , K )  is one of the k fK distinct data vectors of length K. 
From bn (t) we obtain 

and from Bn we have 

and using F, ( f )  we obtain 
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In the above series of equations, E { . )  denotes the expectation with respect to the 
random index n = 1.2. ..., i l lK .  

The expression in (7.17) is valid only when IC(Tf) I < 1 [IS]. This is also the 
condition for absence of discrete components in the PSD, and is always satisfied for 
those MHPM schemes of interest. 

Computation of the spectrum of a particular frequency starts from (7.2 1) for all 
n. Then other quantities can be computed. The only difficult calculation is (7.21) 
where numerical integration must be performed. In the cases of LREC and LRC fre- 
quency pulses, analytical expressions may be obtained for (7.2 l), thus considerably 
simplifying the calculation. Programming efficiency may be increased by exploit- 
ing the symmetry in b,(t) and by utilizing the tree structure of the hf signals. The 
entire computation effort is roughly proportional to illK. For practical schemes K 
usually is a small number. The computation complexity should not be a problem. 

As in the case of single-h CPM, when H K  is a set of integer indexes, IC(T') I = 
1, line spectral components will appear in the PSD [14]. 

Figure 7.7 shows PSDs for several sets of indexes obtained using the above 
method. Figure 7.7(a) also shows the PSD of MSK for comparison. It is seen that 
the spectrum of the {2/4,3/4) binary lREC scheme is largely the same of MSK, 
but it has an asymptotic coding gain over MSK of about 1.4 dB. The spectrum for 
{4/9,6/9) binary lREC scheme is shown in Figure 7.7(b), which also is similar 
to MSK spectrum. The asymptotic coding gain over MSK is 2.3 dB. Both multi-h 
spectra in Figures 7.7(a, b) are absent from nulls. Multiple indexes appear to smear 
the spectra and f i l l  the nulls in the MSK spectra. The roll-off rate of the two spectra 
is proportional to f -" Figure 7.7(c) is the PSD for {4/8,5/8.6/8) binary lREC 
scheme. This spectrum is also shown in Figure 7.6 where the autocorrelation method 
is used. It can be seen that both methods produce the same PSD. Again the spectrum 
of this scheme is similar to those in Figure 7.7(a, b). This is not surprising since 
their minimum and maximum deviations (determined by the indexes) are equiva- 
lent or close. This scheme has a 2.8 dB asymptotic coding gain over MSK. PSD 
of the {4/9,6/9) binary RC scheme is shown in Figure 7.7(d). The roll-off rate is 
proportional to f -8. 

For phase modulation, it was shown that if the phase pulse q ( t )  has (N - 1) 
continuous derivatives which are equal to zero at the leading and trailing edges, then 
the power spectrum decays asymptotically as f -2(Nf ') [MI.' For 1 REC MHPM 
schemes, N = 1. thus their spectra decay as f -' as shown in Figures 7.7 (a to c). 
For raised-cosine pulse, N = 3, and its spectrum decays as f -' as shown in Figure 
7.7(d). 

There are two simple methods that approximate the spectrum of an MHPM 

Similar results are stated in Chapter 5, Section 5.11 for symbol shaping pulse. 
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Figure 7.7 (a) PSD for (2/4,3/4) binary lREC MHPM in comparison with MSK. (b) PSD for 
{4/9,6/9) binary IREC MHPM, (c) PSD for {4/8,5/8,6/8) binary IREC MHPM, (d) PSD for 

{2/4,3/4) binary RC MHPM. From [14]. Copyright @ 1981 IEEE. 
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scheme [MI. Method one is to treat the spectrum as an average of constant-h spectra. 
That is 

where iPh,  ( f )  is the spectrum corresponding to index hi. Method two is to average 
the indexes first 

- 
then calculate the spectrum for the single-h CPM with h = h. It is intuitive that the 
closer the indexes become, the more accurate the approximation is. It was reported 
in [MI that with "good" multi-h schemes, method one is generally quite accurate 
(i.e., f 2 dB error in the spectrum). Good schemes appear to be those with indexes 
grouped near one value. Method two also gives the general spectrum shape, but it 
gives true nulls rather than local minima, and is somewhat misleading in that regard. 
Both methods are quite accurate in terms of describing out-of-band power behavior. 

The spectra of some MHPM schemes with partial-response frequency pulse 
were obtained by simulations [9J. Figure 7.8 shows PSDs for several binary 4s 
MHPM schemes with various indexes. A 4s frequency pulse is obtained by con- 
volving 3s with 1 REC, while 3s is obtained by convolving 2TRI (2s) with 1 REC, 
where 2TRI is a triangular pulse over two-symbol intervals. Figure 7.9 shows the LS 
pulses and some other pulses. In Figure 7.8, the average indexes are 0.5 and 0.8. The 
spectra of the 0.8 group is wider than that of 0.5 group. In each group, the spread- 
ing between the two indexes determines the spectral width. Generally, the wider the 
spread, the wider the spectrum. Also it is clear from the figure that the average in- 
dex can be used to calculate approximately the MHPM spectra, especially when the 
spread is narrow. 

7.3 DISTANCE PROPERTIES AND ERROR PROBABILITY 

The distance equations of single-h CPM are still applicable to MHPM. Particularly 
we rewrite the normalized Euclidean distance (6.32) here 
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Figure 7.8 PSDs for several binary 4s MHPM schemes with various indexes. From [9]. Copltright @ 

1982 IEEE. 
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Figure 7.9 Some frequency pulse shapes. From 19) Copyright @ 1982 IEEE. 

where 

is slightly different from (6.3 1). The difference is that h has been replaced by hk. 
The error probability is again largely determined by the minimum distance dmi, 

as in (6.39) and (6.40) when detected with the maximum likelihood sequence detector 
at high signal-to-noise ratios. We rewrite them here 

As we pointed out in Chapter 6, that even though P, is the error probability of se- 
quence detection, it is approximately equal to the symbol error probability at high 
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SNR. 
Distance properties of M-ary 1 REC (or linear phase) MHPM schemes have been 

analyzed in [17]. Upper bounds on the minimum distances were calculated for binary 
1 REC 2-h schemes, M-ary 1 REC 242 schemes, binary l REC 3-h schemes, binary 
lREC 4-h schemes, quaternary and octal lREC MHPM schemes. An upper bound 
on the minimum distance is an important parameter of an MHPM scheme since it 
gives the maximum achievable minimum distance, hence the minimum achievable 
error probability of the scheme. The actual minimum distances were calculated for 
several different 2-h schemes and for various parameter combinations. 

As we described in Chapter 6, upper bound on the dki, can be obtained by 
calculating the distances and choosing the minimum for all pairs of phase paths which 
give first, or deeper, inevitable mergers in the phase tree or trellis. As we already 
know from Chapter 6, upper bound d2, is a hnction of h for fixed frequency pulse 
g( t ) .  For MHPM it is a function of H K  for fixed frequency pulse g( t ) .  Logically 
the upper bounds for multi-h schemes should be calculated against various sets of 
(hl , h2 . . . , hx). However, empirical results show that most of the good 2-h, 3-h, and 
4-h schemes are those with low and moderate average values and the individual hi 
values are close together. Thus it is of special interest to study the upper bound for 
the case hi = h. This of course degenerates the multi-h schemes back to single-h 
schemes whose upper-bound expressions are different and upper-bound values are 
smaller. Typically, first merges of single-h schemes occur earlier and the upper bound 
is smaller. However, we can still pretend that the scheme is multi-h and the merges 
remain unchanged, thus the expressions also remain unchanged. Then we let all 
hi = h, the resulting expressions would become the approximate upper bounds for 
schemes with hi close to each other but still different. Strictly speaking, these upper 
bounds are not upper bounds for any scheme, single-h or multi-h, since for single-h. 
bound expressions are different; for multi-h, there exist no such schemes where all 
hi are equal. Nonetheless the upper bound for hi = 6 is representative for schemes 
with hi close to each other but still different 117). Figure 7.10 is a summary of upper 
bounds on for various M and K versus for multi-h schemes and versus h for 
single-h schemes, respectively. - This figure is simple, clear, and representative due 
to the use of average index h. Otherwise, if various index sets HK were used, the 
figure would have been too complicated, and not representative. 

Now let us examine Figure 7.10. For M = 2, the maximum increase of bound 
for K 2 2 over the K = 1 case is 3 dB for 5 0.5. For larger values slightly bet- 
ter bounds are obtained with increasing values of K. Further increase in A' leads to 
smaller gain in bounds. On the other hand, increasing M gives significant gain in 
distance bounds. For instance, Af = 4 single-h case has the same bound as that for 
A 1  = 2, K = 2: 3 , 4  cases for 5 0.5. And dl = 8 single-h case has the higher 
bound than that for hi = 2, K = 2 , 3 , 4  cases for 5 0.5. The conclusion from Fig- 
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Figure 7.10 Summary of upper bounds dg  on dkin for various A1 and K values. From [17]. Copyright 

@ 1982 IEEE. 
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ure 7.10 is that to keep system complexity down while achieving fairly large distance 
gain, the good choices are binary 2-h schemes and quaternary single-h schemes for - 
h < 0.5. Further increasing K andlor hl will not increase distance gain significantly - 
while the system complexity will increase significantly. In addition, using h > 0.5 is 
not preferable since the signal bandwidth will be increased. 

Actual has been calculated in [17] for various schemes. Figure 7.11 shows 
d t i n  for binary lREC 2-h schemes where hl = 0.5 is fixed and h2 is allowed to 
change. The path length is N = 30 for calculating d2in. The dashed line is the 
upper bound. From the figure, it can be seen that the upper bound is tight in this 
h region except for those weak or catastrophic values of the modulation indexes. 
For these specific values of modulation indexes, merges occur earlier in the phase 
tree, leading to reduced minimum distances. In Figure 7.11, the weak indexes are 
2 4 ,  ( 2  1 3 ,  2 2 ,  ( 1 2  3 4  and ( 1  1 )  More results of d$in 
for binary and quaternary 1 REC MHPM schemes are available in [17]. 

By using partial-response frequency pulses, further gain of minimum distance 
can be obtained 191. Of course the price is the increased system complexity. 

The trade-offs between distance and bandwidth for full-response 1 REC-MHPM 
schemes and partial-response 3RC MHPM schemes are considered in (91 and the 
results are summarized in Figures 7.12 and 7.13, respectively. 

In Figure 7.12, the bandwidth is the two-sided normalized 99% in-band power 
bandwidth and the distance is relative to MSK. The MSK's two-sided 99% band- 
width is 1.2& (see Section 5.2.2). Among single-h schemes, RI = 4 schemes 
outperform M = 2 schemes considerably. Slight further improvement can be ob- 
tained by increasing M to 8, especially at large h values (large 2BTb). The figure 
also shows the equal-h bounds for K = 2 schemes with hf = 2,4 ,  and 8. Again 
we can see that going from M = 2 to M = 4 improves significantly and going 
from A,f = 4 to A4 = 8 does not make much difference. Specific schemes are 
shown for the K = 2, M = 2 and K = 2, M = 4 cases. It can be seen that these 
schemes are slightly below corresponding bounds. For K = 3, bound peak points 
are shown. The A$ = 2, K > 2 equal-h bound is also shown, which coincides with 
the A1 = 2, K = 2 bound in the first part of the curve (also see Figure 7.10). An 
overall comparison reveals that binary multi-h schemes perform roughly the same 
as single-h ilf = 4 or M = 8 schemes. In most cases M-ary single-h schemes are 
better. Considerable improvements are obtained by using K = 2, A1  = 4 schemes. 
Only minor hrther improvement can be obtained by further increasing andlor ill. 

Figure 7.13 shows power-bandwidth trade-off for M-ary partial-response 3RC 
MHPM schemes. The bandwidth is defined as the bit rate normalized width of the 
smooth power spectra at the -60 dB level, not the fractional out-of-band power band- 
width used in Figure 7.12. The figure shows four cases: 113 = 2.4 and K = 1.2. 
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Figure 7.11 The minimum squared normalized Euclidean distance dLin for binary l REC 2-h schemes 
with hl = 0.5 versus h2 for N = 30. From [171 Copyright @ 1982 IEEE. 
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Figure 7.12 Power bandwidth trade-off for M-ary lREC MHPM schemes. The bandwidth is the -20 dB 
(99%) out-of-bmd power bandwidth. All schemes are compared at equal bit rate. From (91. Copyright 
@ 1982 IEEE. 

Again fiom this figure we can see that M = 4 schemes are considerably better than 
M = 2 schemes for the same h or HK; and 2-h schemes are slightly better than 
single-h schemes for the same M. There are two 2-h 3RC schemes that are consid- 
erably better than MSK: M = 4, Hz = (0.35,0.40), and (0.40,0.45). They have 
1.8 1 dB and 3.14 dB gain in distance over MSK. 

Lereim investigated the coding gain and spectral properties of the various binary 
I REC MHPM signals extensively and the results are summarized in Tables 7.1,7.2, 
and 7.3 [6]. The modulation indexes are expressed in the form of {q/pl, pz , . . . p ~  } . 
The decision depth is the depth in the trellis beyond which all unmerged paths have 
distance exceeding df,,,, the free di~tance,~ and is a useful design parameter for 

d f tee  is defined as the distance from a given ("transmitted") path to its nearest neighbor of any 
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Figure 7.13 Power bandwidth trade-off for M-ary  partial response 3RC MHPM schemes. The bandwidth 
is defined as the bit rate normalized width of the PSDs at the -60 dB level. From [93. Copyright Q 1982 

IEEE. 

the practical Viterbi demodulator. The coding gain is the gain in dki, over that of 
MSK. The bandwidths are the one-sided fractional out-of-band power bandwidths 
normalized to the bit rate. For MSK, we can easily find out (using (5.14) and (2.2 1 )) 
Bg5% s 0.45, Bg9% z 0.6, B99,5% = 0.81. These are benchmarks for bandwidth 
comparison when reading the tables. Table 7.1 lists the schemes with high coding 
gains. But these schemes also need higher bandwidth than MSK; and the schemes 
have at least three indexes, which translate into high system complexity. Table 7.2 
lists the schemes with moderate coding gain and less bandwidth needs than MSK, 
and some schemes have only two indexes. Table 7.3 lists the schemes with some 
coding loss and very high bandwidth savings with respect to MSK. 

length. For linear codes. such as convolutional codes. df,,, is independent of the transmitted path. For 
multi-h codes. d!,,. varies with the transmitted path. Thus there is a dj,,,,,i, which dominates the 
error performance. See [4] for more about df,,, . 
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Table 7.1 Binary I REC MHPM schemes with high coding gain over MSK. From [6 ] .  

HK K Coding Bandwidth Decision 

gain(dB) 95.0% 99.0% 99.5% depth -- 
16/12 10 11 8 

16/10 11 12 

13/ 8 9 10 

16/1112108 

16/12 11 10 8 

16/9 10 11 

14/89 10 

16/129 10 8 

14/9 10 11 

16/12 109 8 

16/10 12 9 8 

16/ 8 9 10 

14/7 8 9  

12/67 8 
10/ 5 6 7 

121679 

814 5 6 
12/689 

16/89 

101568 

4 

3 

3 

4 

4 

3 

3 

4 

3 

4 

4 

3 

3 

3 

3 

3 

3 

3 

2 

3 

3.66 

3.36 

3.19 

3.16 

3.16 

3.13 

3.13 

3.03 

2.96 

2.91 

2.91 

2.82 
2.81 

2.81 

2.8 1 

2.77 

2.77 
2.77 

2.74 

2.74 

0.53 

0.53 

0.53 

0.53 

0.51 

0.53 

0.51 

0.54 

0.51 

0.5 1 

0.49 
0.50 

0.50 

0.51 

0.53 

0.53 

0.53 

0.48 

0.54 

0.89 

0.90 

0.85 

0.85 

0.81 

0.84 

0.81 

0.91 

0.81 

0.81 

0.64 

0.65 

0.66 

0.78 

0.83 

0.84 

0.85 

0.61 

0.86 

1.03 

1.03 

1.00 

1.00 

0.98 

0.99 

0.98 

1.04 

0.98 

0.98 

0.93 

0.94 

0.95 

0.90 

0.99 

1.00 

1.00 

0.89 

1.01 

26-27 

17-20 

11 -27 

11-34 

24-26 

18-20 

28 

17-26 

29-30 

29 

28 

22 

17 

13 

7-1 7 

7-9 

13-14 

20 

11-13 
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3andw idth Decision 

Table 7.2 Bandwidth efficient binary IREC MHPM schemes with moderate coding gain over MSK. 
From [ 6 ] .  
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I HK I K ( Coding I Bandwidth I Decision I 

Table 7.3 Bandwidth efficient binary IREC MHPM schemes (with negative coding gain over MSK). 

151345 

14/3 4 

161345 

16/3 5 

13/3 4 

15/ 3 5 

16/4 5 

1 1 / 2 3 4  

9 /2  3 

15/45 

10 /234  

14 /345  

161456 

13 /345  

8 /2  3 

14/ 3 5 

16/56 

14/ 4 5 

11/3 4 

13/ 3 5 
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3 

3 

2 

2 

2 

2 

2 

2 

gain(dB) 

-2.40 

-2.67 

-2.92 

-3 -03 

-2.08 

-2.50 

-1.57 

-2.48 

-2.54 

-1 .08 

-1 .70 

-1.84 

-0.68 

-1.25 

-1.62 

- 1.94 

0.06 

-0.56 
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depth 
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11 

12 
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12 
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0.26 
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0.34 

0.33 
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0.46 

0.46 
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0.49 

0.49 
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0.50 

0.50 

0.51 

0.51 

0.51 

0.51 
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0.53 

0.53 

0.53 
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0.54 

0.54 

0.53 
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0.56 

0.56 
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0.58 
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0.59 
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0.60 

0.59 

0.60 
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So far we have been focusing on dki, and its upper bound dg  . Even though d i i ,  
and d$ are good performance indicators, it would be desirable to have the results of 
the symbol or bit error probability directly. Over bounds to probability of error event 
are given in 141 for binary 1 REC MHPM. Bit error probabilities for the same class of 
schemes were found by simulation and presented in 1181 .~  Further improved results 
were reported in [N] where upper and lower bounds as well as simulation results for 
the bit error probabilities of the M-ary IREC schemes were presented. Figures 7.14 
to 7.16 are from [19]. Simulations were performed by the Viterbi demodulator. 

Three schemes, binary {2/4,3/4),  {4/8,5/8,6/8), and 4-ary {3/16,4/16) 
were considered. The free distance calculations for these schemes project an asymp- 
totic gain over coherent BPSK or QPSK by 1.4 dB, 2.8 dB and -0.8 dB, respectively 
The first two have spectra comparable to that of CPFSK with h = 5/8, and the 
99% bandwidth is about 1.67 times the bit rate. The 4-ary scheme has a narrower 
bandwidth. Its 99% bandwidth is about 0.7 times the bit rate. 

The upper bounds and lower bounds and simulated bit error probabilities for 
the binary {2/4.3/4) scheme are shown in Figure 7.14 where N is the number of 
symbols of the observation (or path memory length). The decision depth is four 
for this scheme. Thus we expect that N = 4 should be adequate as a practical path 
memory length. From Figure 7.14 we can see that this indeed is true. For Pb < lod4, 
the upper bound for N = 4 case is only 0.2 dB or less higher than the unlimited path 
memory case. The simulation results for N = 4 and N = rn are very close. The 
upper and lower bounds for N > 4 are very tight at &/No 2 8 dB. With N = 2, the 
performance is much poorer. It is essentially equal to that of BPSK (see the BPSK 
curve in Figure 4.4). 

Figure 7.15'shows the bounds for the binary {4/8,5/8,6,8) scheme. Larger 
asymptotic coding gain with respect to coherent BPSK is observed. When compared 
with the {2/4,3/4) scheme, this stronger scheme needs longer path memory length 
to realize its potential. The decision depth for this scheme is nine. The upper bound 
for N = 8 is about 0.3 dB higher than the unlimited memory bound. 

Figure 7.16 shows the bounds for the 4-ary {3/16,4/16} scheme. This scheme 
has a narrower bandwidth than the binary ones. However, the coding gain is nega- 
tive with respect to coherent BPSK. The asymptotic loss is about 0.8 dB. Again the 
decision depth for this scheme is nine, the upper bound for h' = 8 is about 0.3 dB 
higher than the unlimited memory bound. 

- - 

The binary data symbols are [0,1] in [4,18] instead of [-!,I] which is the common assumption in the 
literature and this book. The [O,i] symbol assumption does not change the distance property of the phase 
trellis. hence the error performance. However. it does reduce the number of distinct phases in the trellis 
to half. That is. the number of distinct phases is q instead of 29 14) 
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Figure 7.14 Bounds and simulated bit error probabilities for the binary IREC (2/4,3/4) scheme. The 
decision depth of the Viterbi algorithm is four. From [I91 Copyright @ 1982 IEEE. 



Digital Modulation Techniques 

Figure 7.  I5 Bounds for the binary IREC {4/8,5/8,6,8) scheme. The decision depth of the Viterbi 
algorithm i s  nine. From [19]. Copyright @ 1982 IEEE. 
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Figure 7.16 Bounds for the Cary IREC {3/ l 6 ,4 /  16) scheme. The decision depth of the Wterbi algo- 
rithm i s  nine. From [19]. Copyright @ 1982 IEEE. 
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7.4 MODULATOR 

MHPM modulators are almost identical to those of single-h CPM except that the 
index h must be cyclically rotated when modulating. Specifically, Figures 6.13 to 
6.17 all can be adapted to MHPM by cyclically changing the modulation indexes. 

7.5 DEMODULATOR AND SYNCHRONIZATION 

MHPM demodulators are also similar to single-h CPM demodulators except that the 
demodulator must have a prior knowledge of the sequence of indexes hk employed 
at the transmitter. Thus in principle we can adapt all demodulators in Chapter 6 to 
MHPM. However, since the MLSE demodulator using the Viterbi algorithm is the 
most promising one and is explored the most in the literature, we will only consider 
this type of MHPM demodulators. 

For MHPM schemes with rational indexes, MLSE demodulation is based on 
their state trellises using the Viterbi algorithm. For MHPM schemes with rational 
indexes and full-response frequency pulse, the phase trellis is equivalent to the state 
trellis, thus MLSE demodulation is based on their phase trellises using the Viterbi 
algorithm. Difference between various MLSE demodulators lie in the "front end* 
of the demodulator (i.e., the method of obtaining the branch rnetrics in the trellis). 

MHPM demodulators reported in the literature so far are for full-response bi- 
nary or M-ary CPFSK (i.e., IREC-MHPM) schemes (4,7,18.20-231. Demodulators 
for partial-response MHPM schemes and frequency pulses other than lREC have 
not been reported in the literature. In the following, we will first discuss the de- 
modulator for binary multi-h CPFSK, which has a very simple structure. Then we 
will discuss the more complex demodulators for M-ary CPFSK with carrier and/or 
symbol synchronization. 

7.5.1 A Simple ML Demodulator for Multi-h Binary CPFSK 

Figure 7.17 is the simple ML multi-h binary CPFSK demodulator which employs 
four bandpass correlators. The reference signals must be updated for each symbol 
interval by cyclically switching indexes hk. The coefficients {A;, A;, A$. A; } are 
sufficient statistics for the signal. They are used to compute the branch rnetrics of 
the phase trellis for the Viterbi processor which eventually demodulates the signal. 
Factors Cl ,k, C2,$, and Dk are related to indexes too and must be cyclically changed. 

This demodulator was first proposed in (41 and later in [I81 as a means of sim- 
ulating error performance. It was later presented as a formal demodulator in [7].  
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Figure 7.17 Multi-h binary CPFSK demodulation: determination of coefficients. From Bhargava et 

a!., Digital Communications by Satellite, Copyright @ 1981 John Wiley & Sons, Inc. Reprinted by 

permission of John Wiley & Sons, Inc. 

Although this demodulator was proposed for multi-h CPFSK, we have no reason to 
believe that this demodulator cannot be used for single-h binary CPFSK. We need 
simply replace hk by h. W have presented the Viterbi demodulator for the general 
CPM case in Chapter 6,  Section 6.5.3. It needs a basic quadrature receiver (Figure 
6.26) and a bank of 2lUL baseband matched filters (Figure 6.27). When applied to 
binary CPFSK (single-h or multi-h), the number of the matched filters in Figure 6.27 
is four which is the same as the number of correlators in Figure 7.17. The structure 
of Figure 7.17 looks a bit simpler since no quadrature receiver is needed. However, 
it requires four coherent reference signals with not only the exact carrier frequency 
but also a linear phase n h k t / T  which depends on the modulation index of the sym- 
bol interval. The four coherent reference signals in Figure 7.17 must be provided by 
a separate carrier recovery circuit. 

We now derive the demodulator structure of Figure 7.17. It is obtained by the 
Gram-Schmidt procedure (which is also used in the discussion of detection of binary 
and M-ary signals in Appendix B). 

Using trigonometric identities, we can expand the CPFSK signal in (7.9) as (ex- 
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pressing the amplitude in terms of the signal energy E : A = d m )  

- sin Ok sin(2n f,t + 
T aknhk(t  - k T ) ) l  

aknhk(t  - kT) 
- sin(2n fct) sin 

T I 
I aknhk(t  - k T )  

- sin ek sin(2x fct) cos 
T 

ai7rhk ( t  - kT) 1 ) + cos(27r fct) sin 
T 

Realizing that if a = f 1, then cos(ax) = cos x and sin(ax) = a sin x3 the above 
can be reduced to 

-ak s i n ( 2 ~  fct) sin 
T 

- sin Ok sin(% f,t) cos I 7rhk(t - kT) 
T 

Using 
above 

+ak cos(27r f,t) sin 
T 

trigonometric identities for cos u cos v, cos u sin v,  sin u sin zl, sin u cos v,  the 
can be converted to 

1 + a ,k  
s t )  = \liF ( m s ~ k )  (--?--) cos (fn f,t + r h k ( t  T - kT) ) 
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Although each pair ofterms with nhk ( t  -kT)/T and - rhk  ( t  - kT)/T is orthogonal, 
terms in one pair are not orthogonal to terms in the second pair. By using the Gram- 
Schmidt procedure, however, we can transform (7.30) into a orthogonal expansion 
based on the following four orthonormal base functions (see Appendix 7A at the end 
of this chapter) 

where 

sin 2ahk 
C 1 , k  = k h k  

Using these four functions, the signal s ( t )  can be written as 
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Rearranging terms in (7.35) gives 

where 

The coefficients reflect the data, the cumulate phase, and the modulation index 
(contained in Ci,k and Dk) in each symbol interval. They completely determine the 
signal s ( t ) .  Due to the orthogonality of the base functions, these coefficients can be 
obtained by correlating s ( t )  with each of the base functions 

which is equivalent to passing the signal s ( t )  through the structure in Figure 7.19 (ex- 
cept for a factor a). The reference signals for the correlators are not completely 
orthogonal, but with the additional multipliers and adders, it is equivalent to a struc- 
ture with the four orthonormal base functions given in (7.3 1 )  to (7.34). 

In the following we will show how the structure of Figure 7.19 is used in the 
Viterbi MLSE demodulator. 

Recall the derivation of the Viterbi demodulator in Section 6.5.3 which is ap- 
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plicable to multi-h case too. The branch metric of the Viterbi processor is 

where ;i is an estimate of the transmitted data sequence a. For the estimate data 
sequence the signal in the kth interval is 

where 

are determined by the sequence Z. These coefficients are computed using (7.37) to 
(7.40) given the sequence la. 

Substitute (7.42) into (7.4 1 ) we have 

where 

are the coefficients obtained by passing r ( t )  through the correlators in Figure 7.17. 
These are the coefficients of the transmitted signal and noise terms n i , k  which are 
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white Gaussian. 
Equation (7.44) shows that the branch metric is equal to the inner product of 

the received coefficients { A ;  ,, , A',,, , A;,, , A:,, } obtained by the correlators of Fig- 

ure 7.1 7 and the locally available coefficients {&, ,, k ,  & 7 &, }. These local 
coefficients are based on the estimate sequence ii and are updated for each symbol 
interval as the length of 5 grows in the Viterbi demodulation process. Particularly, 
from (7.37) to (7.40) we can see that to compute xi,k, we need the symbol estimate - 
ak, cumulate phase estimate &, and the current modulation index hk. The Viterbi 
processor is able to track the estimate sequence (path) iS and related phase sequence 
8, and the modulation index hk must be provided by a synchronizer. 

7.5.2 Joint Demodulation and Carrier Synchronization of Multi-h CPFSK 

Although the demodulator described above is simple, it requires separate circuits for 
carrier synchronization and symbol synchronization. A joint demodulation and car- 
rier synchronization scheme was proposed by Mazur and Taylor [23] for binary multi- 
h CPFSK. The approach is to use the Viterbi algorithm for estimating the data and the 
carrier phase error. The estimated phase error is used in a closed phase-tracking loop 
to achieve carrier phase synchronization. The scheme is named decision-directed de- 
modulator. The scheme is shown in Figure 7-18. The inner product calculator (IPC) 
is to produce the branch rnetrics needed in the Viterbi algorithm. As we discussed in 
Section 6.5.3 (see (6.5 I)), for the AWGN channel, the branch metrics are the correla- 
tions of the received signal r ( t )  with the local carriers. For the j th  signaling interval 
the metrics are 

for data symbol 1 and -1, respectively. Recall hi = pi / q  and there are 2q phase states 
in the trellis for an even q which is the usual case. Therefore the phase state at the 
beginning of the interval is nlr/q, n = 0,1,2,  . .. ,2q - 1. The cosine functions are 
the local carriers, corresponding to 1 and -1, respectively. @(0) is the initial phase 
of the local carriers. To have coherent detection, @(0) must be estimated from r ( t ) ,  
that is, the carriers must be synchronized with the received signal. 
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Figure 7.18 Receiver for binary multi-h CPFSK showing the decision-directed carrier recovery loop 
and the use of the Viterbi algorithm in phase error computation. From [23]. Copyright @ 198 1 IEEE. 

F@) 

The branch metrics can be rewritten as 

NCO 

where 
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The benefit of converting (7.46) to (7.47) and (7.48) is that the local carriers in (7.48) 
no longer depend on nn/q, unlike the ones in (7.46). In addition, the computation of 
branch metrics are made more efficient by means of the two-step calculation depicted 
in (7.48) and (7.47). 

Since r ( t )  = s ( t )  + n( t ) ,  where s ( t )  is the signal defined in (7.9) and n(t)  is 
the AWGN with zero mean and a single-sided power spectral density No, each of the 
above four correlations consists of a signal part and a noise part. In the following we 
will show how the phase error is extracted. For this purpose we assume that noise is 
absent. Under this assumption, we rewrite the received r ( t )  in a different form 

where 

n h .  
e ( t , a j )  = + - L ( t  - jT), for a j  = 311 

T 
'n.rr ej = - , n = 0 , 1 7 2  ,..., 2q-1  
4 

and #j is the random phase introduced by the channel. Then when a, = 1, using 
(7.48) we have 

since the first integral is approximately zero for f, >> 1/T. In the above 

is the difference between the signal random phase and the carrier initial phase which 
is the estimate of the signal random phase. Thus E j  is the estimate error. Similarly 
we can find out others. In summary, we have 
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The nonmatched cases: X l j t  aj = -1,  Yl j ,  aj = -I7 Xoj, nj  = 1. Yoj, a,j = 1, 
are not listed above since they are irrelevant to the discussion that follows. 

In Figure 7.18, the inner product calculator (IPC) is used to generate the prim- 
itive set of four correlations XI j ,  Yl , X O j r  and Yoj needed for each signaling in- 
terval, and a phase rotation network (PRN) uses these to realize the caIcuIation in 
(7.47) (which is a phase rotation operation). Table lookup techniques may be used to 
implement the PRN. The outputs of the PRN are the branch metrics given in (7.47), 
which are used in the Viterbi algorithm detector. For bit interval j and state n, the 
PRN produces two branch metrics b(1 ,  hj , n) and b(- 1: h j, n,) for E j  = 1 and - 1, 
respectively. Based on these metrics, the Viterbi detector makes a tentative decision 
Zj on the data symbol for the current interval (choosing the one with a larger branch 
metric). Based on a sequence of ii, the Viterbi detector makes the final decision 
zji,_D on the symbol back by D intervals, where D is the decision depth, typically 
4 to 8 constraint lengths (see Section 6.5.3). The Viterbi detector also makes a ten- 
tative decision % on the cumulate phase B j .  Assume that the data estimate Zj and 
phase estimate gj are correct, Zj  and aj are used to estimate the phase error E j  as 
follows 

If Zj = 1 , choose Xf = XI j, Y; = Yl 

then in the absence of noise 

1 
z - A E ~  cc E j ,  for small E j  

2 
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IfZj = -1, choose X; = Xoj, Y; = Yoj 

then 
h h 

-Xf sin Oj - Y; cos O j  

n 

It is clear that if the Viterbi estimates ii, and 4 are correct, the operation -Xj sin 0, 
-Y; c o s 6  produces a quantity that is proportional to the phase estimation error 
(Figure 7.18). With noise present, the error signal is passed through the low-pass 
filter F ( p )  in order to reduce the noise. The output is used to control the NCO 
(numerically control led oscillator) to generate a carrier with a decreasing phase error 
as this phase lock loop converges. 

A scheme of (3/8,4/8) and other schemes were simulated in [23). It was found 
empirically that the minimum number of bits of quantization required for demodu- 
lation/decoding is given by 1 + log, q, and that rounding to the nearest quantization 
level, as opposed to truncating, leads to superior performance. It was reported that a 
digital word size of 5 to 6 bits appears sufficient and the expected coding gain of 1.45 
dB for (3/8,4/8) was nearly reached. For the schemes tested, an rms phase error 
of 0.2(7r/2q) rad is typically suficient to achieve almost optimum (within 0.2 dB) 
error-rate performance. In order to achieve this phase error, a minimum loop SNR 
of 30 dB is required. 

7.5.3 Joint Carrier Phase nacking and Data Detection of Multi-h CPFSK 

A joint demodulation and carrier phase tracking (not synchronization) receiver was 
proposed in 1201 for binary multi-h CPFSK. In this receiver, the demodulator is of 
the correlator type shown in Figure 7.17. It is modified to take into consideration 
the carrier phase error. The demodulator is followed by the Viterbi algorithm, which 
maximizes the a posteriori path metric. Thus the receiver is called a MAP-VA re- 
ceiver. The Viterbi algorithm estimates both data and phase error of the local carrier. 
The estimated phase error is not used to adjust the local carrier phase to achieve phase 
synchronization. Instead, it is used in the Viterbi algorithm to assist in demodulating 
the data. Because no carrier synchronization is really achieved, the error perfor- 
mance of this receiver appears inferior to the decision-directed receiver given in 1231 
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Based on the simulation in [ lo]  we can make a comparison between this MAP-VA 
receiver with the decision-directed receiver. The rms phase error of 0.2(a/2q) rad 
mentioned above translates to a squared phase error of 0.16 rad2 for the (3/8,4/8) 
scheme. According to the results given in [lo], for this amount of phase error, the loss 
in error performance at P, = is about 2.5 dB (Figure 4 in pol), whereas the 
loss is only 0.2 dB in [23]. The advantage of this receiver is that its system complex- 
ity is simpler, no phase lock loop is utilized. The detail of this receiver is omitted 
here due to the highly mathematical derivation. 

7.5.4 Joint Demodulation, Carrier Synchronization, and Symbol 
Synchronization of M-ary Multi-h CPFSK 

A receiver which can jointly perform demodulation, carrier recovery, and symbol 
synchronization for 4-ary multi-h CPFSK was proposed by Premji and Taylor in 1211. 
The receiver is an extension of the work on binary multi-h CPFSK in 1231, and again 
is based on maximum likelihood sequence estimation via the Viterbi algorithm. 

The derivation of this receiver basically follows that in Section 7.5.2. Since 
carrier and symbol synchronization are considered, the signal model includes an un- 
known carrier phase Bo and an unknown symbol timing offset TO as 

where 0, = n ~ / q ,  n = 0 ,1 ,2 ,  ..., 2q - 1 is the accumulated phase due to previous 
data. For the jth signaling interval the branch metrics, corresponding to the branches 
of the phase trellis extending from the nth trellis node at time t = jT + are the 
correlations between the r ( t )  and the local carriers: 

where 
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Figure 7. I9 Joint demodulation, carrier synchronization, and symbol synchronization for 4-ary multi-h 

CPFSK. From [21j. Copyright @ 1987 IEEE. 

where Fo and go are estimates of 70 and Bo, respectively. There are four aks,  that 
is, ak = + 1,  - 1, +3. or -3 for k = 1,2 ,3 ,4 ,  corresponding to four branches of 
a node in the trellis. The local carriers in (7.54) no longer depend on n,x/q.  Since 
ak = +1: k3, during the jth interval four correlations operation are needed for 
Xj and another four correlation operations are needed for Yj .  The total number of 
correlations is eight in each interval. 

The receiver is shown in Figure 7.19. The correlations of (7.54) are implemented 
by the two carrier-multipliers, two cycled banks of matched filters, and the summing 
network. The Viterbi decoder calculates the branch metric using (7.53) and performs 
the MLSE based on the phase trellis. In the following, we explain the correlation 
operation first and then the Viterbi decoder. 

The correlations of (7.54) are actually implemented by matched filtering based 
on the well-known fact that correlation can be realized by matched filtering sampled 
at the end of the correlation period. Further, the received signal is down-converted to 
the baseband by the multipliers before filtering is performed. The equivalence of the 
operation in Figure 7.19 to (7.54) can be shown as follows. First, define a shorthand 
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notation a j ( t )  for the linear phase term, 

Then the integrand of X j  can be written as 

Since the double frequency term integrates to zero, only the low-pass term of the 
A 

above contributes to Xj (a factor of 1/2 is ignored and set E j e  = Bo - 6) 

Similarly Y,  can be shown as 

( j + l ) T + ? o  

% = -/ sin [aj ( t )  + O j  + E j e  - & j ( t ) ]  dt 
jT+?o 

( j + l ) T + ? o  

= -/ sin [aj ( t )  + Bj  + € j e ]  cos G j  ( t )d t  
jT+?o 

cos [aj ( t )  + Oj + € j e ]  sin G j  ( t ) d t  (7.56) 

Now assume that the carrier in Figure 7.19 is 

where the estimated phase go is included. Then the I-channel (upper channel) mul- 
tiplier output is 
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the low-pass term of it is (a factor of 1/2 is ignored) 

Similarly, the low-pass term of the output of the Q-channel (lower channel) multiplier 
is 

Yj(t) = sin [a j ( t )  + B j  + E ~ Q ]  (7.58) 

By inspecting the expressions for xj  ( t ) ,  2/j ( t ) ,  X j ,  and Y,, we can see that 

+ + ~ ) T + ? o  
y j  ( t )  sin Sj  (t)dt 

jT+30 

Yj = - y j  ( t )  cos G j  ( t ) d t  

All the four integrations in (7.59) and (7.60) are now correlations in baseband. These 
correlations can be implemented by matched filtering. The filter impulse responses 
must match to 

a j n h j  A 

cos G j  ( t )  = cos - ( t  - jT - T o )  
T 

and 
a j r h j  

sin Z j ( t )  = sin -(t - jT - F o )  
T 

Since a j = f 1 ,  f 3 and by considering f sin 6 j ( t )  as just one filter since the sign can 
be taken care of later when summing is done, the number of matched filter impulse 
responses is actually four. Recall that if the reference signal in the correlation is s ( t ) ,  
then matched filter must be h(t) = ks(T - t ) ,  k constant. Thus in the 0th interval the 
four matched filter impulse responses are (assuming symbol timing offset F0 = 0. 
since F0 is random and cannot be anticipated when filters are determined). 

rh0(T - t )  rho(T - t )  3xho(T - t )  , sin 3nho(T - t )  
{ho(t)}  = Ices T 

, sin 
T 

7 cos 
T T 
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where ho is one of the K indexes, usually the first one. In the jth interval, the filter 
expressions can be obtained by replacing ho by h,j and t by t - jT in the above 
expressions. 

For a K-index CPFSK, there are K sets of four filters in the above forms, with 
each set using a different index. In the receiver these K sets are cyclically reused 
such that 

From (7.59) and (7.60) we also see that the 1-channel alone cannot produce Xj 
and the Q-channel alone cannot produce Yj.  Thus a summing network is needed to 
perform the additions and subtractions in (7.59) and (7.60). 

A selector in Figure 7.19 selects a pair of signals (Zj ?,! c) out of four pairs of 
( X j ,  Y , )  based on the data estimate Ej provided by the Viterbi decoder. This (%, c.) 
and the phase estimate gj  are used to generate the phase error estimate F je  and timing 
offset estimate Z j j ,  as follows 

where wj  = r h j / T .  These have been shown to be optimum under the condition 
that the tracking loop bandwidth is much smaller than the data rate [XI. These error 
signals are passed through loop filters and eventually are used to control two NCOs to 
produce a synchronous carrier and a synchronous symbol timing clock, respectively. 

The performance analysis of this receiver is very complicated and is thus omit- 
ted here. The receiver was simulated for a (12/16,13/16) multi-h CPFSK. The 
simulation used a six-bit quantization and a 15-symbol decision depth in the Viterbi 
decoder. The results showed that a coding gain of approximately 3.8 dB (over MSK) 
is already realized at a BER of while the expected asymptotic gain is about 
4.52 dB for an ideal receiver. At values of E,/N, above 13 dB, a reasonable ac- 
quisition timekteady-state jitter trade-off may be attained through a suitable choice 
of loop SNRs. At lower &/No,  however, some form of gear shifting of the loop 
bandwidth becomes necessary to ensure both a reasonable acquisition time and low 
steady-state jitter subsequent to acquisition. At an input Es /X0 of 13 dB, satisfac- 
tory receiver performance mandates loop SNR values of approximately 35 dB for 
the carrier recovery loop and 33 dB for the clock loop. 

A simplified suboptimum version of the above receiver is given in [221 The 
major change of the receiver is that a fixed bank of filters has replaced the cycli- 
cally changing matched filters. The impulse responses of the fixed filters have the 
average h of the indexes. Thus they still have the forms given in (7.61) except 
that hi is replaced by h. By using fixed filters, a complexity reduction of 1/K is 
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achieved while the penalty is a degradation in error-rate performance of 0.6 to 0.7 
dB at BER = for the code (15/20,17/20) that was simulated. 

7.5.5 Synchronization of MHPM 

Three levels of synchronization are required in a MHPM demodulator: carrier phase, 
symbol timing, and superbaud timing. Carrier phase and symbol-timing synchro- 
nization are common for all coherent phase modulations. What is unique here is the 
superbaud timing. The superbaud is the period of cyclic rotation of the K modula- 
tion indexes. A superbaud period is KT. Since symbol timing and superbaud timing 
are harmonically related, either one can be derived from the other easily. For exam- 
ple, if superbaud timing is established, a frequency multiplier of K times is sufficient 
to produce the symbol timing. 

For the receiver in Section 7.5.4, carrier synchronization and symbol-timing syn- 
chronization are incorporated in the receiver already. For the receiver in Section 
7.5.3, carrier phase synchronization is not needed and only symbol-timing synchro- 
nization is needed. For the receiver in Section 7.5.2, carrier phase synchronization 
is incorporated in the receiver, thus only symbol-timing synchronization is needed. 
For the receiver in Section 7.5.1, both carrier synchronization and symbol-timing 
synchronization are needed. 

Recall that in Section 6.6.1 we discussed the MSK-type carrier and symbol syn- 
chronizer for single-h CPM (Figure 6.44). This synchronizer can also be used for 
MHPM [23]. First the received signal is raised to the power of q (recall hi = pi / q )  
by the nonlinear device in the synchronizer. 

and one of the resultant components is (the amplitude is immaterial, it is set to 1)  

This is an MHPM signal with carrier frequency q f, and phase 

which has an integer index pi. Recall that in Section 6.2.1, we state that when the 
index is an integer the PSD of the CPM signal contains a continuous part and a 
discrete part. Similarly, it can be shown [24] that when the index is an integer the 
PSD of the MHPM signal contains a continuous part and a discrete part. The discrete 
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frequency components appear at 

which can be simplified as 

K n is even if I' = Ci=, pi is even 
f = q f C + & {  n is odd ifI '  = ~ i K _ , p i  is odd 

When K = 1, the above expression degenerates back to the expression for single-h 
CPM. Those spectral lines that contain significant power are few in number since 
their weights decay rapidly at higher harmonics (large 7-1). For any given multi-h 
codes, however, there are always two or three adjacent lines near the peak (q  f,) of 
the spectrum which contain significant power. The spectral lines are separated by 
1/KT Hz. 

Based on (7.63), a synchronizer that is similar to the MSK-type carrier and sym- 
bol synchronizer for single-h CPM (Figure 6.44) can be constructed as shown in Fig- 
ure 7.20. The two phase lock loops (or narrow-band bandpass filters) can select any 
pair of frequencies q f, & n/2KT. The output of the mixer contains the sum and the 
difference of these two frequencies: 2q f, and n / K T .  The high-pass filter and the 
low-pass filter pick up one of them. The frequency dividers divide two frequencies 
to produce f, for the carrier and 1/KT for the superbaud timing. The symbol timing 
is derived from the superbaud timing by a frequency multiplier. 

If carrier recovery is already incorporated in the demodulator, like the one in 
Figure 7.18, the carrier recovery part of Figure 7.20 is not needed. 

7.6 IMPROVED MHPM SCHEMES 

Improvements on MHPM schemes have been made during the recent years. Tech- 
niques that combine MHPM with error control codes, such as convolutional codes, 
will be discussed in a later chapter. What we present here are techniques which make 
changes on the MHPM phase characteristic itself. These include MHPM schemes 
with asymmetrical modulation indexes, multi-T realization of multi-h,, correlatively 
encoded MHPM, and nonlinear multi-h CPFSK. It should be pointed out that these 
improved MHPM schemes may require more complex receivers which have not been 
available in the published literature. 
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Figure 7.20 MHPM carrier, symbol and superbaud synchronizer. 

7.6.1 MHPM With Asymmetrical Modulation Indexes 

Binary MHPM schemes with asymmetrical modulation indexes are proposed in 125. 
261 They use a set of modulation indexes h+k for data + 1 and h-k for data - 1 during 
any kth signaling interval. One simple way of doing this is to use the same set of the 
modulation indexes for both h+k and h-k and simply shift hmk with respect to h + k .  

For example, let {ha  : hb,  h,} be the modulation index set for a 3-h binary scheme. 
The asymmetric modulation index sets can be arranged as follows. 

That is, h+(k , l )  = Lk. This makes the index for the ith interval in the phase trel- 
lis, h+k or hYk?  not necessarily equal for different paths, whereas in conventional 
MHPM it is fixed. As a result, the phase values at t = kT for asymmetric MHPM 
may be a multiple of n/q ,  instead of 2 x / q  as in the conventional MHPM. This gives 
more flexibility to make the minimum Euclidean distance larger. Improvements over 
the symmetrical ones in the range of 0.5 to 1 dB in the upper bounds of error prob- 
ability are reported. The spectral properties of the asymmetrical schemes are almost 
the same of the symmetrical ones. 
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7.6.2 Multi-T Realization of Multi-h Phase Codes 

Binary and M-ary linear phase multi-T phase codes are investigated in [27.28]. The 
modulation index is effectively changed by cyclically varying the symbol interval 
with a constant frequency deviation (excluding the effect of the data symbol). For 
every multi-h code {hl , h2, ..., h K }  a set of symbol periods can be defined as 

where T is the average period 

and 

h is the average index 

Imitating the signal form of the conventional CPFSK, this signal can be written as 

where 

The phase change at the end of each interval is akn-hTk/T. Thus the effective index 
is hk = hTk/T in terms of phase increment for each symbol interval. However, in 
terms of phase change slope, it is like a single-h CPM. 

It is shown that multi-T codes are similar to multi- h codes in terms of minimum 
distance and spectral properties. However, the extraction of the synchronization in- 
formation by means of a PLL seems to be easier for multi-T codes than multi-h codes 
since the spectrum for the 9th power of the binary multi-T signal contains only two 
lines in the vicinity of g f,, whereas there are more than two lines in the case of binary 
multi-h signals [28]. 

7.6.3 Correlatively Encoded Multi-h Signaling Technique 

A correlatively encoded multi-h signaling technique was introduced by Fonseka et 
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a1 [N]. It was claimed that this scheme performed significantly better than partial- 
response MHPM. In this scheme, the MHPM signal is defined as 

I s ( t )  = Acos 2xfct+ 
LT 

This signal is a multi-h CPFSK signal with a depth of correlation L, is abbreviated by 
LCE-MH. Recall that the total phase of the partial-response multi-h CPFSK (LREC- 
MH) signal is 

Clearly, when h is constant, LCE-MH is identical to LREC-MH. LREC-MH signals 
are generated by first multiplying the information data by the modulation indexes and 
then correlative encoding, while LCE-MH signals are generated by first correlative 
encoding the information data and then multiplying by the modulation indexes. Thus 
the phase variation of LREC-MH during any signal interval is influenced not only by 
the modulation index used in that interval, but also by the modulation indexes used 
in the previous (L - 1) intervals. The phase variation of LCEC-MH signals during 
any signal interval is influenced by only the modulation index used in that interval. 

In addition to correlative coding as depicted in (7.65), modulation indexes can be 
arranged in certain patterns instead of simply cycling them. This can further increase 
the constraint length and the minimum distance. Two good patterns used in (7.65) 
are 2-h slots of 2T pattern 

and 2-h slots of 3T pattern 

Some numerical results in 1291 are listed in Table 7.4, where comparisons are 
made between the correlatively encoded2-h signals with partial-response/2-h sig- 
nals at fixed modulation indexes. In the table, NR is the receiver path memory length 
and is equal to the minimum number of intervals required to ensure that the distance 
between any two paths is less than the minimum distance of the signals. From the 
table, it is seen that significant coding gain can be achieved by correlative encoding 
over the conventional partial-response MHPM. 
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h , h2 

0.5.0.7 

Table 7.4 Comparison of  correlatively encoded 2-h signals with partial response 2 4  signals. From 
[29]. Copyright @ IEEE. 

0.5,0.7 
0.5,0.7 
0.8,l.O 

19/24,5/4 
19/24,7/6 

7.6.4 Nonlinear Multi-h CPFSK 

signal type 

2CE-MH 

A scheme called nonlinear multi-h CPFSK is proposed in pol .  In this scheme, the 
signals still have the same form of (7.9) except that the modulation index during any 
kth interval hk is a function of signaling interval k and m previous symbols. The 
m previous symbols define 2m states Si = 0,1,2:  .. . ,2* - 1. The scheme uses 2m 
modulation index patterns, and a pattem 

2CE-MH 
3CE-MH 
3CE-MH 
3CE-MH 
3CE-MH 

contains K distinct modulation indexes where Hsi denotes the modulation index 
pattern selected for symbol state Si. Once the modulation index pattem is selected, a 
modulation index is picked from it by cyclically shifting the modulation indexes with 
period K as in ordinary multi-h CPFSK. It is observed that the constraint length of 
this scheme is rn + K + 1, whereas it is K + 1 for the ordinary multi-h CPFSK. By 
properly choosing the index pattern, increases in the minimum Euclidean distance 
of up to 2.7 dB over ordinary multi-h CPFSK and up to 1.8 dB over asymmetrical 
multi-h CPFSK have been observed. 

index 
pattern 

slots of 2T 

7.7 SUMMARY 

slots of 2T 
regular 2-h 
regular 2-h 
regular 2-h 
slots of 3T 

In this chapter we have studied the multi-h continuous phase modulation (MHPM). 
We first defined the MHPM signal. Then we studied the properties of its phase trel- 
lis, including the number of phase states, the period of the trellis. A direct method of 
computing the spectra of the MHPM schemes was described and spectra of some im- 
portant MHPM schemes were presented. The calculation of the distances is similar to 
CPM. Many results of the minimum distance and its upper bound for various binary 
and M-ary MHPM schemes were presented. Three extensive tables compared many 

d$in 

3.28 
3.97 
2.39 
4.01 
5.00 
5.13 

L V ~  

36 
16 
22 
19 
40 
76 

gain 
(dB) 
1.152 

pdreg. 2-h 

3.226 
1.226 
3 -000 
2.217 
2.487 

d:in 
2.518 

NR 
47 
8 
7 

31 
7 
7 

0.876 
2.890 
1.263 
3.535 
3.140 
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multi-h codes in terms of their coding gain, bandwidth, and decision depth. Those 
are valuable design references. The modulator for MHPM is almost the same as that 
of the CPM except that the index must be cyclically rotated. Thus it is not repeated in 
this chapter. The demodulators for MHPM are also similar to single-h CPM demod- 
ulators except that the demodulator must have a prior knowledge of the sequence of 
indexes h,k employed at the transmitter. Thus in principle we can modify all demod- 
ulators in Chapter 6 for MHPM. However, since the MLSE demodulator using the 
Viterbi algorithm is the most promising one, several demodulators of this type were 
presented. Some of these receivers incorporate carrier and symbol synchronization 
in the receiver. For those that do not, a separate synchronizer is needed, which was 
discussed. Finally, we briefly described several improved MHPM schemes in the 
end of the chapter. These schemes manipulate the modulation indexes in a variety 
of ways in an attempt to increase the minimum distance, while maintaining a simi- 
lar spectrum. The receivers for many of these schemes have not yet appeared in the 
literature. 

In the next chapter we will study quadrature amplitude modulation (QAM) which 
is a nonconstant envelope modulation scheme with very high bandwidth efficiency, 
and is widely used in systems where constant envelope is not required. 

7.8 APPENDIX 7A 

Buy inspecting (7.30), two of the orthonormal functions can be assigned as 

The orthogonal relationship can be verified by integration: 

( k + l ) T  r h k ( t  - ICT) rhk ( t  - kT)  

- - % lr cos (2nfCt + 
T 

sin 2?r fct + > ( T 
) dt  
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In most systems of practical interest f, >> l/T1 this means 27r fcT 2 2n. The value 
in the bracket is between -2 and +2, thus the above is approximately equal to zero. 
The norm of $7, ( t )  is 

sin 2 (2.n f,t + nhk(t - kT) /T )  
= + 

2T (2.x f, + .xhk/T) 

Similarly we can show Sk((:+'lT +$(t)dt  = 1. The remaining orthonormal functions 
are found as follows. Define 

1 sin 47~ f,t T sin 27rhi ( t  - k T ) / T )  (k+ 1 ) ~  - 
- T (  4xJC + 2xhk k~ 

Similarly 
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- f irtl)T (sin4rlrt + sin 2xhk(t  - k T )  - 
T 

According to Gram-Schmidt procedure, the third orthonormal function is 

where 

and 

Thus 
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Finally 

where 

where 

The coefficients S d i  are determined as follows: 

(k+ 1 )T 
- 
- $ J[T 

sin (2R f,t - 
T nhk(t - k T ) )  

cos 2nhk - 1 
X 

2rhk = 4 2 , k  
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( k+  l )T 7rhk(t - kT) 
343 = sin (laj,t - T ) 

Thus 
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Chapter 8 

Quadrature Amplitude Modulation 

At this point, all the passband modulation schemes we have studied, FSK, PSK, 
CPM, and MHPM, are constant envelope schemes. The constant envelope property 
of these schemes is specially important to systems with power amplifiers which must 
operate in the nonlinear region of the input-output characteristic for maximum power 
efficiency, like the satellite transponders. For some other communication systems, 
constant envelope may not be a crucial requirement, whereas bandwidth eficiency 
is more important. Quadrature amplitude modulation (QAM) is such a class of non- 
constant envelope schemes that can achieve higher bandwidth efficiency than MPSK 
with the same average signal power. QAM is widely used in modems designed for 
telephone channels. The CClTT telephone circuit modem standards V29 to V33 are 
all based on various QAM schemes ranging from uncoded 16-QAM to trellis coded 
128-QAM. The research of QAM applications in satellite systems, point-to-point 
wireless systems, and mobile cellular telephone systems also has been very active. 

In Chapter 1 we mentioned binary amplitude shift keying (ASK). ASK can also 
be made M-ary, called M-ary amplitude modulation (MAM). MAM is usually no 
longer a preferable choice due to its poor power efficiency. However, since QAM 
signal consists of two MAM components and they can be demodulated in two sepa- 
rate channels, it is necessary to understand MAM's behavior in order to understand 
QAM. We discuss MAM in Section 8.1. Then we move on to define QAM signal and 
constellation in Section 8.2. Wious QAM constellations are introduced in Section 
8.3, but only the square QAM constellations are described in detail. QAM's PSD, 
modulator, demodulator, error probability, synchronization, and differential coding 
are discussed in Sections 8.4 to 8.9. Section 8.10 summarizes the chapter. 

8.1 M-ARY AMPLITUDE MODULATION 

In this section we first introduce MAM in its most general form which is applicable to 
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baseband as well as bandpass signals. Then we focus our attention on the analysis of 
bandpass MAM signals which will serve as a foundation for analyzing QAM signals. 

In its most general form, an M-ary amplitude modulation signal can be expressed 
as 

T 2 for i = 1,2, . . .M, @(t)  is any unit energy function of duration T, that is So q5 ( t ) d t  = 
1. Consequently ST = Ei is the energy of si (t). If @(t)  is a baseband pulse, then 
s i ( t )  is the baseband M-ary amplitude modulation, which is usually called M-ary 
pulse amplitude modulation (PAM). The NRZ and RZ line codes are examples of 
baseband binary AM schemes. If $(t)  is a high frequency sinusoidal carrier, then 
si (t) is the passband M-ary amplitude modulation. The passband MAM is also called 
amplitude shift keyiilg (ASK). The OOK (on-off keying) is a binary passband AM 
scheme with one of the si being zero. The BPSK can be also viewed as a binary 
passband AM scheme with two antipodal si. 

8.1.1 Power Spectral Density 

On the entire time axis, we can write MAM signal as 

where amplitude s k  is determined by the message data which are random. Thus s k  is 
a random variable. Expression (8.2) is in the form of (A. 14) in Appendix A. Further 
assuming that data are uncorrelated, the PSD of s ( t )  is given by (A. 18), that is 

where @(f) = F{$( t ) } ,  03 is the variance of s k  and ms is the mean value of sk. 

The first part of (8.3) is the continuous spectrum and the second part is the discrete 
spectral lines. Note that a( f )  could be a baseband spectrum or a bandpass spectrum, 
depending on whether @(t )  is baseband or bandpass 

For MAM, usually the amplitudes are uniformly spaced and symmetrically lo- 
cated around zero. Then rn, = 0, thus 

This tells us that the PSD of MAM is determined by the PSD of the basis function 
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$(t ) .  If the amplitude distribution is not symmetrical around zero, then m, # 0, 
discrete spectral lines will be present. 

Note that (8.3) and (8.4) are applicable to both baseband and bandpass d ( t ) .  
However, for bandpass $(t), the spectrum @( f )  has two parts, centered around fc 
and - f,. Thus (8.3) and (8.4) are not convenient to use. For bandpass random signal 
the PSD is completely determined by the PSD of its complex envelope or equivalent 
baseband signal (A. 13). Thus it suffices to have the PSD of the complex envelope 
%(f)  instead of 9, (f ). Assuming the bandpass MAM signal is 

where p ( t )  is a pulse-shaping function, then the complex envelope of s ( t )  on the 
entire time axis is 

which is in the form of (A.14). Thus for uncorrelated data, the PSD of bandpass 
MAM signal is 

where P( f )  = T { p ( t ) )  is the spectrum of p ( t ) ,  a: is the variance of Ak, and r n ~  
is the mean value of Ak. Usually the amplitudes are uniformly spaced and symmet- 
rically located around zero. Then ma = 0, and 

The above shows that the PSD of bandpass MAM is determined by the PSD of the 
pulse-shaping function p ( t ) .  If the amplitude distribution is not symmetrical around 
zero, then ma # 0, discrete spectral lines will be present, such as in the OOK case. 

Now let us assume p ( t )  is rectangular with unit amplitude then 

and 

which has the same shape of the PSD of MPSK. 
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8.1.2 Optimum Detection and Error Probability 

In the M-ary PAM signal set, there is only one basis function which is the @(t) .  
Geometrically, each signal can be represented by its projection on the $(t)  

Thus from (B.37), the optimum detector is a one-dimensional minimum distance 
detector. Assuming the received signal is 

the sufficient statistic is 

and the detector compares r to si and chooses the closest (minimum distance decision 
rule). 

The error probability of the coherent detection for an M-ary PAM with equal 
amplitude spacings can be derived as follows. Assuming AWGN channel with two- 
sided noise PSD of NJ2, 

where n is Gaussian with zero mean and a variance of NJ2.  Thus r is Gaussian with 
mean si and variance N o / 2 .  Figure 8.1 shows the probability distribution densities 
of r conditioned on si, where T i  are thresholds. This figure can help us derive the 
error probability. 

Assuming si is transmitted, a symbol error occurs when the noise n exceeds in 
magnitude one-half of the distance between two adjacent levels. This probability is 
the same for each si except for the two outside levels, where an error can occur in one 
direction only. Assuming all amplitude levels are equally likely, the average symbol 
error probability is 

where A is the distance between adjacent signal levels, and also is the distance be- 
tween adjacent thresholds. For equal amplitude spacing, the amplitudes may be ex- 
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Figure 8.1 Thresholds and decision regions for M-ary PAM. 

pressed as 

s i = ( 2 i - 1 - M ) A , ,  i =  1 , 2  ,..., 11 

where A, is the smallest amplitude. Then 

Thus 

The symbol error probability can be expressed in terms of the average energy or 
power of the signals. The average energy of the signals is 
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As a result, (8.11) becomes 

where Pa,, = &,,IT is the average power. Since the average energy per bit is 
Ebatlg = Eaug / log2 M ,  (8.1 3) can be written as 

Figure 8.2 shows the curves of the symbol error probability of the M-ary PAM 
versus EbaVg/h$. We emphasize that (8.13) to (8.15) depend on only average energy 
or power of the signal symbols, not the function form of $(t). This makes (8.13) to 
(8.15) applicable to both baseband and bandpass MAM signals. The A4 = 2 case 
corresponds to NRZ-L (baseband), or BPSK (bandpass), in this case (8.15) reduces 
to (2.48) or (4.6). 

In comparison to MPSK, starting from M = 4, the error probability of M-ary 
PAM is inferior to that of the MPSK. In fact we can easily compare them. From the 
P, of the MPSK (4.24) and (8.13), the ratio (MAM over MPSK) of the arguments 
inside the square root sign of the Q-hnction is 

and is tabulated in Table 8.1. If M 2 32 the degradation is constantly 5.17 dB. This is 
easily seen from (8.16). For large M, sinn/M 2 T I M ,  and RM 3/n2 S 0.304. 
Another fact is that in both MAM and MPSK, for the same error probability, the 
power increase is 6 dB for doubling M for large M. This can be seen from (4.24) and 
(8.13). This means in terms of increasing bandwidth efficiency with increased M ,  
both schemes pay the same penalty in BER performance. However, MAM still has a 
fixed 5.17 dB disadvantage against MPSK. This shows MAM is inferior to MPSK in 
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Figure 8.2 Symbol error probability of MAM. 
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Table 8.1 Power penalty of MAM over MPSK. 

terms of error probability. However, we will see that going to two-dimensional AM, 
namely, QAM, improves error rate performance significantly. As a result, QAM is 
superior to MPSK when i\ii > 4. 

8.1.3 Modulator and Demodulator for Bandpass MAM 

Now we focus on bandpass MAM. The bandpass MAM signal set is 

for i = 1 ,2 ,  . . . , M. It can be easily written in the form of (8.1) by defining #( t )  = Jmp(t) cos 2s f,t where Ep is the energy of pulse-shaping signal p ( t )  in [0, TI. 
T 2 Note that So 4 ( t ) d t  1 for f, > > 117'. Thus for most practical cases, si (t) = 

Ai JEpIz@(t) and v = Ai JE,/2. 
The modulator is shown in Figure 8.3. Figure 8.3(a) is a direct implementation 

of (8.17). The level generator takes n = log, A,f bits from the binary data stream 
and maps them into an amplitude level Ak E {Ai), where the subscript k indicates 
the kth symbol interval. The mapping is preferably Gray coding so that the n-tuples 
representing the adjacent amplitudes differ only by one bit. The functions of the 
rest blocks are self-explanatory. The equivalent implementation is shown in Figure 
8.3(b). It is more practical for hardware implementation. The p ( t )  multiplier is 
replaced with a filter with an impulse response p ( t ) .  In order to generate a pulse 
Aip( t ) ,  the input to the filter must be an impulse Ai6(t ) .  In practice, this can be 
realized by a very narrow pulse with amplitude Ai.  

The optimum receiver implementing the minimum distance rule is shown in Fig- 
ure 8.4 where the last block is a threshold detector. Figure 8.4(a) is a direct implemen- 
tation of (8.9) and the minimum distance rule. In Figure 8.4(b), the correlation with 
p ( t )  is replaced by a matched filter and a sampler. Figure 8.4(b) is more practical for 
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Binary data Level 
Generator 

{Ai) 
i 

Figure 8.3 Bandpass MAM modulator. 

Ak 
. 

Binary data , 

hardware implementation. The equivalence between parts (a) and (b) in Figure 8.4 
can be shown as follows. For the signal part in the noise-corrupted received signal, 
the output of the down-convertor in both cases is 

In Figure 8.4(a), the integrator output is 

Level 
Generator 

{A; 1 
L 

for fc >> 1/T. In Figure 8.4(b), the high-frequency term cos 47r f,t is blocked by 
the low-pass filter p(T - t) .  The output of the filter is 

A k  . 
b ~ ( t )  '. 
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Figure 8.4 Optimum coherent demodulators for bandpass MAM. 

which is exactly the same as the output of the integrator in Figure 8.4(a). As to 
the noise in the received signal, parts (a) and (b) in Figure 8.4 are also equivalent. 
Assuming the noise in the received signal is n( t ) .  The output noise of the integrator 
in Figure 8.4(a) is J: n ( t ) # ( t ) d t .  The output noise of the down-convertor is 
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Then the output of the matched 

Quadratuw Amplitude Modulation 

filter is 

which is exactly the same as that of the correlator. Thus the equivalence between 
parts (a) and (b) in Figure 8.4 is established. 

The threshold detector has M - 1 thresholds, each placed in the middle of two 
signal points (refer to Figure 8.1). The correlator computes the r and the threshold 
detector is actually computing the distance of r to the amplitudes si, i = 1 ,2 ,  . . . A l  
and chooses the smallest. Note that the reference signal can be any scaled version of 
$ ( t )  as long as the thresholds are scaled accordingly. 

The coherent carrier in the coherent demodulator can be generated using the 
synchronization methods described in Chapter 4, such as a squaring loop (Figure 
4.35 with M = 2). The n phase ambiguity associated with the squaring loop can 
be solved by differential coding. The Costas loop (Figure 4.36) can also be used to 
demodulate MAM. The symbol timing clock can be recovered by using the methods 
described in Chapter 4. 

8.1.4 On-Off Keying 

The simplest MAM, is the OOK, which we mentioned in Chapter 1. The OOK signal 
set is 

where a is the binary data which are assumed uncorrelated and equally likely. The 
complex envelope of the OOK signal s ( t )  on the entire time axis is 

where Ak E {O! A), p ( t )  is a rectangular pulse with unit amplitude whose P( f) is 
given by (8.7). Since r n ~  = A/2  and a: = ~ ~ 1 4 ,  P ( $ )  = 0 except for k = 0, 
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from (8.5) we have the PSD for OOK as 

Note this is exactly the same as the PSD of the unipolar NRZ line codes (see (2.25) 
and Figure 2.3(b)). 

The symbol error probability for coherent demodulation of OOK can be obtained 
from (8.13) with E,,, = Eb, or directly from (B.32), the BER expression for binary 
signaling. That is 

where Eb is the average bit energy. When compared with BPSK, the PSD is the same 
except that it has a spectral line at f,, which can be locked on by a phase lock loop 
to recover the carrier, but the BER performance of OOK is 3 dB inferior to that of 
BPSK. OOK is not usually preferred against BPSK. 

8.2 QAM SIGNAL DESCRlPTION 

Having studied MAM, we are ready to discuss QAM. In MAM schemes, signals 
have the same phase but different amplitudes. In MPSK schemes, signals have the 
same amplitude but different phases. Naturally, the next step of development is to 
consider using both amplitude and phase modulations in a scheme (QAM). That is 

where Ai is the amplitude and Oi is the phase of the ith signal in the M-ary signal set. 
Pulse shaping is usually used to improve the spectrum and for IS1 control purpose in 
QAM. With pulse shaping, the QAM signal is 

sj ( t )  = Aip ( t )  C O S ( ~ T  fct + Oi), i = 1? 2: ... .ill (8.22) 
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where p ( t )  is a smooth pulse defined on [0, T I . '  Expression (8.22) can be written as 

si ( t )  = Ailp( t )  cos 2a f,t - Aizp(t)  sin 2~ f,t (8.23) 

where 

Ail = Ai cos Bi 

Ai2 = Ai sin Bi (8.25) 

and 

Similar to MPSK, QAM signal can be expressed as a linear combination of two 
orthonormal functions. Expression (8.23) can be written as 

where - 

and 

~ i 2  = G A i 2  = E A i  sin Bi 

where Ep is the energy o f p ( t )  in [0, TI. That is Ep = J: p2( t )d t .  The factor dm 
is to normalize the basis functions (t) and #,( t ) .  

Even if pulse shaping is not desired, there is still inevitably pulse shaping due to the limited 
bandwidth of the system. In fact, deliberate pulse shaping is usually achieved through filtering. That 
is to make P( f )  = H T ( f )  HC( f )  H R (  f )  or equivalently p(t) = hT( t )  * hc( t )  * hR( t ) ,  where 
hT ( t ) ,  hc ( t )  and hR (t) are the impulse responses of the transmitter filter, channel. and receiver filter. 
respectively. HT (f ), HC (f ), and HR ( f )  are their transfer functions. A common choice of P( f) is the 
raised-cosine, whose time domain function p ( t )  has zero values at sampling instants except for at t = 0. 
Thus p(t) incurs no ISI. However, the raised-cosine response is noncausal, only an approximate delayed 
version is realizable. See [ I ,  pp. 100- 1021. 
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It can be easily verified that the basis functions 4, ( t )  and $2 ( t )  are virtually 
orthonormal for f, >> 1/T. When f, >> 1/T, p ( t )  is a slow-varying envelope. 
First they are virtually normalized since 

- - 1 IT p2( t ) [ l  + cos dnf,tjdt 
*P 0 

1, for fc >> 1/T 

The same is true for &(t).  Second, they are virtually orthogonal since 

Thus for most practical cases, 4, (t) and $2( t )  are orthonormal. When there is no 
pulse shaping, that is, p(t) = 1 in [0, TI, Ep = T. Then (8.28) and (8.29) have the 
same forms of (4.2) and (4.3). They are precisely orthonormal. 

The energy of the ith signal is 

and the average signal energy is 

The average power is 

The average amplitude is 

Similar to MPSK, a geometric representation called constellation is a very clear 
way of describing a QAM signal set. The horizontal axis of the constellation plane 
is 4,(t)  and the vertical axis is #,(t). A QAM signal is represented by a point (or 
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Type I QAM constellation Type II QAM constellation 

Type III QAM constellation 

Figure 8.5 Examples of type I,  I1 and 111 QAM constellations. From [8l Copyright @ 1994 IEEE. 

vector, or phasor) with coordinates (sill si2) Alternatively, the two axes can be 
simply chosen as p ( t )  cos 2n f,t and - p ( t )  sin 2.rrfct. Then the signal coordinates 
are ( A i l ,  Aiz) .  The two axes sometimes are simply labeled as I-axis and Q-axis, 
and sometimes are even left unlabeled. Figure 8.5 shows examples of three types of 
QAM constellations. 

Now let us examine the properties of the QAM constellation. Assuming the axes 
are (t)  and &(t) ,  then each signal is represented by the phasor 



426 Digital Modulation Techniques 

The magnitude of the phasor is 

which is related to the signal amplitude by (from (8.32) and (8.36)) 

The average energy is 

The phase Bi is the angle of the corresponding phasor 

The distance between any pair of phasors is 

Depending what values (si17 siz) or (Ai, Bi) are assigned with, a variety of QAM 
constellations can be realized. 

8.3 QAM CONSTELLATIONS 

The first QAM scheme was proposed by C. R. Cahn in 1960 [2]. He simply extended 
phase modulation to a multi-amplitude phase modulation. That is, there is more 
than one amplitude associated with an allowed phase. In the constellation, a fixed 
number of signal points (or phasors) are equally spaced on each of the N circles, 
where N is the number of amplitude levels (Figure 8S(a)). This is called type I 
constellation in the literature. In a type I constellation, the points on the inner ring 
are closest together in distance and are most vulnerable to errors. To overcome this 
problem, type 11 constellation was proposed by Hancock and Lucky a few months 
later  figure 8.5(b)). In a type I1 constellation, signal points are still on circles, 
but the number of points on the inner circle is less than the number of points on 
the outer circle, making the distance between two adjacent points on the inner circle 
approximately equal to that on the outer circle. Type 111 constellation is the square 
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QAM constellation shown in Figure 8.5(c), which was proposed by Carnpopiano and 
Glazer in 1962 [4]. Their analysis showed that the type 111 system offered a very small 
improvement in performance over the type I1 system, but its implementation would 
be considerably simpler than that of type I and 11. Due to this, the type 111 constellation 
has been the most widely used system. Some other two dimensional constellations 
considered in the literature are given in Figure 8.6. The circular constellations are 
denoted by the notation (nl , nz, ...) where nl is the number of signal points on the 
inner circle, nz is the number of signal points on the next circle, and so on. Figure 
8.6 contains the type I1 and type 111 constellations. 

When designing a constellation, consideration must be given to: 

The minimum Euclidean distance dmin among the phasors (signal points). It 
should be as large as possible under other constraints, since it determines the 
symbol error probability of the modulation scheme. 
The phase differences among the phasors. It should be as large as possible under 
other constraints, since it determines the phase jitter immunity and hence the 
scheme's resilience against the carrier- and clock-recovery imperfect ions and 
channel phase rotations. 
The average power of the phasors. It should be as small as possible under other 
constraints. 
The ratio of the peak-to-average phasor power, which is a measure of robustness 
against nonlinear distortion caused by the power amplifier. It should be as close 
to unity as possible under other constraints. 
The implementation complexity. 
Other properties, such as resilience against fading. 

Research results have shown that the square constellation (type 111) is the most 
appropriate choice in AWGN channels. It can be easily generated as two MAM sig- 
nals impressed on two phase-quadrature can-iers. It can be easily demodulated to 
yield two quadrature components. Each component can be individually detected by 
comparing it to a set of thresholds. A few of the other constellations offer sightly 
better emor performance, but with a much more complicated system implementa- 
tion. Therefore we will concentrate on the square constellation in this chapter. The 
type I constellation (also called star constellation) is not optimum in terms of dmin 
under the constraint of average phasor power. However, it allows efficient differen- 
tial encoding and decoding methods to be used. This makes it suitable for fading 
channels. Its application in fading channels will be covered in Chapter 10. 
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Rectangle (1,3) 
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M=B M =  16 

Figure 8.6 ~ i o u s  QAM constellations. From [5 ] .  Copyright @ 1974 IEEE. 
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8.3.1 SquareQAM 

For M-ary square QAM signals, (8.23) and (8.27) can be written in the following 
form 

where Eo is the energy of the signal with the lowest amplitude, and (Ii. Qi) are a 
pair of independent integers which determine the location of the signal point in the 
constellation. The minimum values of ( I i ,  Qi) are (f 1, f I). The pair ( I * ,  Qi ) is an 
element of the L x L matrix: 

r ( - L + I , L - I )  - + , - 1  . . .  L -  l L -  1) 1 

where 

For example, for the 16-QAM in Figure 8.7, where L = 4. the matrix is 

When hf = Zn but not 4n, L is not an integer, we cannot use the matrix (8.42) 
directly to define the QAM. However, we may use a modified matrix to define the 
QAM. For example, the 32-QAM can be defined by a 6 x 6 matrix without the four 
elements on the four comers. 

The constellation can be conveniently expressed in terms of (Ii1 Qi). The pha- 
sors for the square QAM are 
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Figure 8.7 Square QAM constellations. From [6, p.2241. Copyright @ 1987 Prentice Hall. 
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The magnitude of a phasor is 

The QAM signal in (8.41) can also be written as 

si ( t )  = Ai C O S ( ~ T  fct + Bi) 
where the amplitude is 

The phase Bi is the angle of the corresponding phasor 

The distance between any pair of phasors is 

di j  = Js 

The average energy is 

and the average power is 

where for the strict square (L x L) QAM 
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where Po is the power of the smallest signal. 

8.4 POWER SPECTRAL DENSITY 

Using the PSD formula for quadrature modulation (see (A.2 1 )  in Appendix A), the 
PSD of the square QAM can be computed as follows. 

In order to include the most general case, we consider QAM with pulse shaping. 

si ( t )  = A i p ( t )  ~ 0 ~ ( 2 7 ~ f ~ t  + 0,) i = 1 . 2 ,  1CI 

On the entire time axis, the QAM signal can be written as 

(8.46) 
The complex envelope of the QAM signal is 

where 

Akl = A& COS ek 

Ak2 = Ak sin Qk 

These are random variables with equal probability for each value. They have zero 
means for symmetrical constellations (Figures 8.5 to 8.7). The variances of them 
depend on the constellation shape. 
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From (8.38), the average power of the signal is 

Now we use the PSD formula (A.21) in Appendix A to compute the PSD of 
QAM. We rewrite it in the following 

where P( f )  and Q( f )  are the spectra of the I-channel signal and Q-channel signal 
pulse shape, respectively. This is a very general formula, applicable to any quadrature 
modulated signal. For QAM schemes P ( f )  = Q ( f ) ,  n: = 0: and 0: = n$, we 
have 

This equation tells us that the shape of the PSD of a QAM scheme is determined by 
the baseband pulse shape, and the magnitude of the PSD is determined by the average 
power (or average amplitude) of the QAM signal set. It is also worthwhile to point 
out that the shape of the PSD of a QAM scheme is independent of the constellation. 
In other words, no matter what the constellation is, be it square, circular or others, 
the PSD shape is the same as long as the p( t )  is the same, the PSD magn 
the same as long as the average signal power is also the same. 

W~thout particular pulse shaping, p( t )  is just a rectangular pulse w 
plitude. Then Ep = T and 

Therefore 

itude is also 

ith unit am- 
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where n = log2 hl and Tb = T l n  is the bit period. This PSD has the same shape 
of the PSD of MPSK (see (4.26)). The only difference lies in the magnitude. In the 
MPSK case, the PSD magnitude depends on the signal amplitude because there is 
only one signal amplitude. In the QAM case, the PSD magnitude depends on the 
average signal amplitude. Thus, the PSD curves for MPSK in Figure 4.15 are also 
applicable to QAM schemes as long as the average amplitude of the QAM is used. 
For example, for M-ary square QAM, from (8.49) and (8.45) we have 

sin 7r f nTb 2 

3 

8.5 MODULATOR 

The QAM modulator is almost identical to that of MPSK since both of them are 
quadrature schemes. We can write the QAM signal as 

where 

The modulator derived directly from (8.5 1) is shown in Figure 8.8. If pulse shap- 
ing is not desired, the p ( t )  block will be absent. The data bit sequence is divided 
into n-tuples of n bits. There are h4 = 2" distinct n-tuples. Each n-tuple of  the 
input bits is used to control the level generator. The level generator provides the I- 
and Q-channel the particular sign and level for a signal's horizontal and vertical co- 
ordinates ( A k l ,  AkZ) ,  respectively. The mapping from n-tuples to QAM points are 
usually Gray coded for minimizing bit errors. For square QAM, perfect Gray cod- 
ing is possible. Figure 8.9 is a Gray coded square 16-QAM constellation. For some 
constellations, such as a circular QAM with four points on the inner ring and eight 
on the outer, it is not possible to have perfect Gray coding. 

Digital synthesis techniques can be used to generate QAM signals. Each signal 



Chapter 8 Quadratuw Amplitude Modulation 

Figure 8.8 QAM modulator. 

Figure 8.9 Gray coded square 16-QAM constellation. The signal points are labeled with 4-bit Gray 
codes. 
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in the constellation can be stored as a set of samples and the data n-tuple is used as 
the address to obtain thesamples. The samples are fed to a D/A converter whose 
output is the desired QAM signal. 

8.6 DEMODULATOR 

- .. . 

Similarto MPSK, the coherefifdemodulation of QAM could be implemented by one 

. . 
of the coherent detectors for M-ary signals as described in Appendix B. Since the 
QAM signal set has only two-basis functions, the simplest receiver is the one that 

... 
uses two co~elators (Figure B.8 with N = 2). Due to the special characteristic of 
the QAM signal, the general demodulator of Figure B.8 can be simplified. 

The received signal is 

~ ( t  ) = si ( t )  + n(t) 

According to (B.37) in Appendix B,for QAM signal detection the sufficient statistic 
is the (squared) distance2 

- - 

li = ( r l  - sil)' + ( r2  - s ~ ~ ) ~  (8.52) 

where 

are independent Gaussian random variables with mean values sil and siz, respec- 
tively Their variance is N,/2. The pair ( r l  , r z )  determines a point in the QAM 

- - -  

constellation plane, representing the received noisy signal. The detector compares 
the distances from (r l  , r 2 )  to all pairs ..- of (sil ? si2) and chooses the closest one. 

Figure 8.10 is the demodulator based on the above decision rule where subscript 
k indicates the kth symbol period. Note that the amplitude of the reference signals 
can be any value, which is in the figure, as long as (sil, siz) are also scaled 
accordingly. As we have shown inBection 8.1.3, the integrators may be replaced by 
matched filters whose outputs are sampled at t = ( k  + l )T (Figure 8.11). The filter 
impulse responses match to the shaping pulse p ( t ) .  For the square QAM, the r l k  and 

Note that this is differ& from the sufficient statistic of MPSK. In the case of MPSK. each signal 
has thesame energy thus (8 .38)  with Bj dropped instead of ( 8 . 3 7 )  is used. which leads to a decision 
rule that compares only angies not distances. 
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Carrier 

Figure 8.10 Coherent demodulator for QAM. 

Sample 
at t = (k+l)T 

Compute 2, 
and 

choose 
the smallest 

Compute Zj 

and 
choose 

the smallest 

Figure 8.11 Coherent QAM demodulator using matched filters. 
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Figure 8.12 Coherent demodulator for square QAM using threshold detectors. 1-channel and Q-channel 
are demodulated separately. 

r zk  can be detected separately by two multi-threshold detectors to yield s i l  and siz,  
and then signal si (t) can be determined (Figure 8.12). 

8.7 ERROR PROBABILITY 

For square QAM constellations with AM = 2k where k is even, the QAM constella- 
tion is equivalent to two MAM signals on quadrature carriers, each having L = 
signal points. As we have seen from the last section, each MAM signal can be de- 
modulated separately. A QAM symbol is detected correctly only when two MAM 
symbols are detected correctly. Thus the probability of correct detection of a QAM 
symbol is 

PC = (1 - 

where PJi7 is the symbol error probability of a &Wary AM with one-half the av- 
erage pow& of the QAM signal. From (8.13) we have 

where E,,,/Ar, is the average SNR per symbol. The symbol error probability of the 



Chapter 8 Quadratuw Amplitude h4odidation 

square QAM is 

At high SNR, 

Note that (8.54) is exact for - square QAM with ill = where k is even. When k is 
odd there is no equivalent JM-ary AM system. However, we can find a tight upper 
bound 17, Page 6551 

for any k 2 1, where Eb,,,/N, is the average SNR per bit. 
To obtain bit error probability from the symbol error probability, we observe that 

square QAM can be perfectly Gray coded. That is, there is only one bit difference 
between adjacent symbols. Each symbol error most likely causes one bit error at 
large SNR. Thus 

Figure 8.13 shows the Pb curves for M = 4,8,16,32,64,128, and 256 where 
the curves for M = 8,32, and 128 are tight upper bounds (dotted lines). 

In the following we compare QAM with MPSK. From the P, of MPSK (4.24) 
and (8.55) or (8.56), the ratio (QAM over MPSK) of the arguments inside the square 
root sign of the Q-function is 

This reflects the ratio of the signal power. This ratio is tabulated in Table 8.2. 
From the table we can see that for M > 4, the QAM is superior to MPSK. 

Furthermore, for large M ( 2  32) the power savings increases 3 dB for doubling 
the number of signal points. This can be explained from (8.58) by observing that 
RLj4 2 3M/2?r2 for large 111. This can also be looked at from another point of view. 
Examining (8.55) or (8.56) reveals that for large M ,  doubling A1 incurs 3 dB penalty 
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Figure 8.1 3 Square QAM bit error probability. 
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Table 8.2 Power savings of QAM over MPSK. 

in signal power, whereas the penalty for MPSK and MAM is 6 dB as we pointed out 
before. That is why Table 8.2 shows a 3 dB increase in power savings for doubling 
M when QAM is compared with MPSK (and it is also true compared with MAM). 

8.8 SYNCHRONIZATION 

Clock synchronization for QAM is usually achieved by clock recovery circuit which 
extracts the clock from the demodulated signal or uses the demodulated signal to 
control the local oscillator. Clock recovery techniques for QAM are the same as those 
for MPSK. The open-loop clock recovery circuits in Figure 4.37 and the earlyAate- 
gate clock recovery circuit in Figure 4.38 are all applicable to QAM. Refer to Chapter 
4 for details. 

Carrier synchronization is always necessary for square QAM constellations, 
even when differential coding is used. This is because differential coding for the 
square QAM is only for some of the bits in a symbol. Even though these bits can be 
determined by comparing two consecutive symbols (differential demodulation), the 
rest of the bits still must be determined by coherent demodulation. Thus the entire 
symbol might as well be coherently demodulated. For a description of differential 
coding for QAM, refer to the next section. Circular QAM constellations do not re- 
quire carrier synchronization if differential encoding is used. We will discuss this in 
Chapter 10. 

Carrier synchronization can be achieved by the pilot-tone technique or a separate 
synchronization chamel, which requires extra bandwidth, as we mentioned in Chap- 
ter 4. Again we will not elaborate on this. Instead we focus on the carrier recovery 
techniques. There are two major types of carrier recovery techniques for QAM. One 
is the fourth-power loop (or times-four loop) and another is the decision-directed car- 
rier recovery (DDCR). According to [8, Page 1821, the decision-directed carrier recov- 
ery technique is one of the most popular carrier recovery schemes used in fixed-link 
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QAM systems. The fourth-power loop carrier recovery has been suggested for digi- 
tal radio in fading environment [9]. In the following we first discuss the fourth-power 
loop technique and then the decision-directed carrier recovery technique. 

Recall that the Mth-power loop (Figure 4.35) is used for MPSK, but for M-ary 
QAM, the Mth-power loop is not necessary, only the fourth-power loop is needed. 
Unfortunately the squaring loop does not work for symmetrical QAM since the av- 
erage energy at 2 f, is zero. It is also known that for M greater than four, the data 
pattern effects lead to an increased amount of carrier phase jitter in an Mth-power 
loop 191. Thus the fourth-power loop is the right choice for QAM. 

We show below that the squaring loop does not work for symmetrical QAM, but 
the fourth-power loop does. From Section 8.5 we see that Ail and Ai2 are generated 
by level generators using the input data which are random. Therefore Ail and AiZ are 
random. Mk assume that their values are symmetrical about zero, that is, they have 
zero means. We further assume that the input data are ergodic random processes. 
Consequently Ai and Aiz are ergodic random processes so that the time average is 
equal to the statistical average. All the above assumptions are the usual case in digital 
communications. We square the QAM signal given in (8.23) and take the average 
over all possible i to obtain 

2 
E{S? (t  ) } = E { p 2  (t ) [ A : ~  cos ~ , t  - 2Ail Ai2 cos act sin wCt + A : ~  sin2 wet] } 

= E { ~ ~  ( t )  [ A : ~  cos2 w,t + A ? ~  sin2 wet] 

where w c  = 27r fc and the middle term in the first expression vanishes since Ail and 
Aiz are independent zero-mean random processes so that 

For symmetrical QAM, E{A?~  } = E {A?2}, the above becomes 

which has no periodical component at f, or its multiples. We can intentionally un- 
balance the QAM constellation to make carrier recovery possible, but this leads to 
inefficient signal constellations. A fourth-power nonlinearity can produce a nonzero 
component at 4 f, even if the QAM is symmetrical. Using trigonometrical identities 
we can show that (see Appendix 8A at the end of this chapter) 

+ E {A;: } (3 - 4 cos 2w,t + cos 4J,t)] 
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For symmetrical QAM, since E{A:l ) = E{A?*}, we have 

+ i p 4 ( t )  [ ~ E { A $ )  - ~ ( E { A % } ) ~ ]  cos 4u,t (8.60) 

There is a nonzero component at 4f,. 
For the square QAM, Ail = Ii d m ,  Ai2 = Qi JEoIE, (see (8.4 1)). 

where the result of (8.44) is used, and 

where 

Substitute (8.61) and (8.62) into (8.60), we have 

From (8.63) we can see that the 4 f, component always has a phase of  A for the square 
QAM. 

For the square 16-QAM we have 

2 

E {sf ( t ) }  = ip4 ( t )  (3) (99 - 17 cos h , t )  
EP 
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Table 8.3 Amplitude ratio. 

Ifp(t) = 1, then Ep = T, then 

This shows that the 4 f, component has a phase of .rr and an amplitude of 17/99 r 
17.2% of the dc component. In fact we can calculate this ratio for a series of Ai, as 
listed in Table 8.3. 

Note that the above results (Table 8.3) are for ideal fourth-power devices and 
square QAM. For other types of constellations and nonideal devices, the results 
would be different. For some types of constellations, the 4 f, component may be 
too weak to be useful. Then other carrier recovery techniques, such as the decision- 
directed carrier recovery technique may be needed. 

The block diagram in Figure 4.35 can be used for the fourth-power loop by let- 
ting ill = 4. A slightly different version was proposed by Rustako et al [9] where 
the fourth-power loop was proposed for QAM digital radio receivers. Figure 8.14 is 
the diagram given in 191. The VCO is working at f,. A x4 block is inserted in the 
PLL loop to raise the VCO frequency to 4 f,, which is then compared with the out- 
put of another x 4 block whose input is the received signal. The x 4 block is actually 
realized by a frequency-doubler whose nonlinearity generates a 4 f, component as a 
by-product at a level of about 20 dB below the 2 f, component. A detailed analysis of 
the times-four loop can be found in [9]. Rustako notes that in a fading environment, 
decision-directed carrier recovery suffers when occasional receiver outage destroys 
the accuracy of the data detections. This causes loss of carrier recovery and consid- 
erable time may be required to re-acquire the carrier. He notes that times-four carrier 
recovery does not depend on data decision. For this and other reasons, times-four 
carrier recovery was proposed for digital radio receivers. 

As mentioned, the decision-directed carrier recovery technique is one of the 
most popular carrier recovery schemes used in fixed-link QAM systems. The mech- 
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Figure 8.14 Times-four carrier recovery loop for QAM. 

anism of DDCR is not based on nonlinearity. In this scheme, when a symbol is 
received, it is demodulated and a decision is made as to which was the most likely 
constellation point transmitted. Then it is assumed that the phase difference between 
the received symbol and the constellation point is due to carrier-recovery error, and 
the carrier recovery is updated accordingly. DDCR has the advantage that it can be 
used for all types of constellations. However, it exhibits a BER threshold. If the re- 
ceiver BER is less than this threshold, it works extremely well since the "decisions" 
that assist the carrier recovery are correct almost all the time. If the receiver BER is 
higher than this threshold, the decisions on the constellation points are wrong more 
frequently. The update signal to the carrier recovery system therefore is erroneous 
more frequently, the cumulative effect can drive the carrier phase further and further 
away from the correct value. Whether DDCR is suitable for a particular application 
depends on this BER threshold. 

Horikawa et a1 designed a DDCR system for a 200Mbps square 16-QAM [IO]. In 
their design, the square 16-QAM constellation points are divided into two subgroups, 
called class I and class II phasors (Figure 8.15). The class II phasors are those on the 
second circle with a normalized amplitude of a. The rest are the class I phasors, 
four are on the outer circle, with an amplitude of 0; four are on the inner circle, 
with an amplitude of a. The quadrature components of the class 1 phasors are 
equal in magnitude (i.e., 1 I1 = IQI), whereas the quadrature components of the class 
I1 phasors have a 3 to 1 ratio (i.e., 111 = 31Q1 or [ & I  = 3111). 

Horikawa's DDCR system operates only on class I phasors. In other words, only 
class I phasors in the received signal are utilized by the DDCR system to recover the 
carrier. The DDCR system compares the values of the demodulated signal I and Q. 
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Class I subgroup Class I1 subgroup 

Figure 8. 15 Square 1 6-QAM subgroups. 
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If they satisfy the relationship 

then the system decides that a class I phasor has been sent. This rule is designed 
to effectively reject class I1 phasors while detecting class I1 phason in a noisy envi- 
ronment. Once a class I phasor is detected, its I and Q values are used to determine 
polarity of the carrier drift and subsequently to adjust the VCO. The algorithm is as 
follows [ 8 ]  First compute the quantities 

a = pol ( I )  B, pol(Q) 

b = pol(I+Q) 

c = pol(1-Q) 
d = ( a @ b ) $ c  

where (ti denotes modulo-2 addition or XOR operation, and 

The d is used to control the VCO. 
According to the above algorithm, the values of (abc) and d are shown in Figure 

8.16 for each octant. As can be seen, the value of d changes between 0 and 1 alter- 
nately from an octant to the next. The quantity d is used to adjust the VCO frequency 
and phase. The demodulated signal is 

where L P F  denotes low-pass filtering. The VCO is assumed to have an amplitude 
of 2 and a phase error A0 which is due to frequency error and initial phase error. 
From Figure 8.16, when d = 0, the angle of r is less than the transmitted phasor. 
From (8.67), this implies that the VCO has a positive phase error. Thus the VCO is 
instructed to run slower (reduce its frequency). When d = 1, the angle of r is greater 
than the transmitted phasor. From (8.67), this implies that the VCO has a negative 
phase error. Thus the VCO is instructed to run faster (increase its frequency). For 
example, assume r = (I, Q) = (2.24,3.6) is received (see Figure 8.16). Then 
a = pol(2.24) ~ p o l ( 3 . 6 )  = 1 @ 1 = 0, b = pol(5.84) = 1, c = pol(-1.36) = 0, 
and d = 0 (D 1 i D  0 = 1. Thus the VCO is instructed to increase its frequency. 

The DDCR system is shown in Figure 8.17. The received signal r ( t )  is demod- 
ulated by the I- and Q-branches to produce I and Q. Then I and Q are fed into four 
comparators to generate a, b, and c, which are fed into XORs to generate d. At the 



Digital Modulation Techniques 

Figure 8.16 Distribution of the quantities in the DDCR algorithm. 

same time, the I and Q are full-wave rectified to produce 111 and IQI, which are passed 
through the other two comparators to check whether they satisfy the relation (8.65). 
If they do, the selective gate will open, allowing signal d to pass the D flip-flop 
to control the VCO. Once synchronization is established in Figure 8.17, the I- and 
Q-channel outputs can be tapped by two threshold detectors to determine the trans- 
mitted symbol. Thus only two extra threshold detectors are needed to make Figure 
8.17 a complete demodulator. 

8.9 DIFFERENTIAL CODING IN QAM 

In Chapter 4 we studied differential coding for MPSK signals. Similarly, differential 
coding is needed for QAM. It is needed for square QAM to resolve the phase ambigu- 
ity in carrier recovery. For circular QAM the use of differential coding can eliminate 
the need for carrier recovery, which is particularly attractive for fading channels. We 
will elaborate on this in Chapter 10. For now we focus on how differential coding is 
constructed in square QAM. 

Weber proposed a scheme for differentially encoding the signals for QAM and 
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Figure 8.17 Implementation of a decision-directed carrier recovery system for square 16-QAM. From 
[lo). Copyright @ 1979 IEEE. 
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MPSK i l l ] .  We follow his paper here. First, a signal set has an L-fold rotational 
symmetry if the signal set pattern remains unchanged after a rotation o f f  I (27r/L) 
radians, where I and L are integers. For example, in Figure 8.5, the type I constel- 
lation has an 8-fold symmetry, the type I1 constellation has a Cfold symmetry, and 
the type 111 constellation has also a 4-fold symmetry. As a matter of fact, all square 
QAM schemes are 4-fold symmetrical. It is also clear that all MPSK schemes are 
ill-fold symmetrical. The L-fold rotational symmetry causes a phase ambiguity of 
2r /L ,  that is, any phase rotation of 27r/L or its multiples in the received signal will 
cause the signal to be demodulated as another signal. For example, for the square 
QAM, times-four loop is used for carrier recovery. Any phase rotation of a/2 in the 
received signal will not change the constellation, thus the recovered carrier, which 
is based on the average of signals over the constellation (over a long period of time 
in practice), will always have the same phase. Thus the signals in the first quad- 
rant may be demodulated as the signals in the second quadrant, or third quadrant, 
or fourth quadrant, depending on the actual amount of phase rotation. Differential 
coding is an efficient way to resolve the phase ambiguity. Other methods include 
sending a separate synchronizing signal or periodic insertion of a synchronizing se- 
quence in the data sequence. The differential coding method does not require extra 
bandwidth like the other two, but increases the error probability slightly. 

As discussed before, the QAM signal points are usually Gray coded in order to 
minimize bit error probability. Differential coding will violate the Gray code rule, 
thus increasing the bit error probability. However, the differential coding procedure 
should be carefully chosen such that it can remove the symmetrical ambiguities at a 
minimum increase of the error probability. The following is the differential coding 
procedure given by Weber for an A4 = 2K signal set for which L = 2". 

1. Divide the signal space into L equal pie-shaped sectors. These sectors are 
differentially encoded using the first N bits of each K bits of data. That is, 
the first N bits determine the change in sector. 

2. The remaining K - N bits determine the signal point within the sector. The 
2 ( K - " )  signal points within the sector must be Gray coded to reduce the 
probability of error. (However, perfect Gray coding may not be possible.) 

We will see how this is done through an example. Figure 8.18 is the differential 
encoding for the square 16-QAM. In the figure, the signal space is divided by the 
I- and Q-axes into L = 4 pie-shaped sectors (quadrants in this case). Signal points 
are labeled with the last two bits in a Ctuple. As far as these two bits are concerned, 
they are Gray coded in each sector. In addition they are arranged so that they are 
4-fold symmetrical in terms of the last two bits. That is, a rotation of 7r/2 or its 
multiples of any signal will result in a signal having the same last two bits. The first 
two bits are used to determine the change of quadrant. Table 8.4 shows the encoding 



Chapter 8 Quadraturn Amplitude Modulation 

Figure 8.18 Differential encoding for square 16-QAM. From [ I  I). Copyright @J 1978 IEEE. 

and decoding procedure for Figure 8.18 through an example. The first quadrant is 
denoted as q l ,  the second 9 2 ,  and so on. The change in quadrant (Aq) is denoted as 
0 for no change, +1 for forwarding one quadrant, and so on. We assume the initial 
reference signal is sl, corresponding to bits 0000. Take the second four bits 10 11 
as an example. The first two bits are 10, which means the quadrant change is -1 
according to Figure 8.18. Since the current quadrant is ql , the next will be q4, that 
is, the next signal must be in 94.  Since the last two bits are 11, within q d ,  the signal 
labelled with 11 is signal s l e .  Thus the signal point to be transmitted is s16 When s 1 6  

is received without phase rotation (A4 = 0), which is compared with the previous 
signal (sl) to determine the quadrant change (-1).  This determines 10 as the first 
two bits. The last two bits then are determined as 11 by the fact that s16 is labeled 11. 
When s16 is received with phase rotation (say A$ = .rr/2), which becomes s ~ .  At 
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Encoding 
Message 

A4 

ref. 

0000 1011 0001 1100 0110 

- 1 0 +2 +1 

Decoding (A@ = 0) 
Received signal 

, A4 
Decoded Message 

[ Decoded Message I0000 1011 0001 1100 0110 

ref. 

s1 s16 s14  s5 s11 

- 1 0 +2 +1 

0000 1011 0001 1100 0110 

Decoding (Ad, = ~ / 2 )  
Received signal 

Acr 

Table 8.4 Examples of differential coding for square 16-QAM. 

S5 S4 S2 s g  s15 

- 1 0 +2 + I  

the same time the reference signal is also changed to s5 due to the rotation. Signal 
s4 is compared with the previous signal (s5) to determine the quadrant change ( -  1). 
This determines 10 as the first two bits. The last two bits then are determined as 11 
by the fact that s4 is labeled 1 1 .  From the table we can see that phase rotation does 
not affect decoding of the signals. Thus the phase ambiguity is removed. 

For general K-bit (K even) square QAM, again only the first two bits need to 
be differentially encoded for resolving the quadrant ambiguity, while the remaining 
K - 2 bits are Gray coded in each quadrant. For other constellations, such as circular 
QAM, the same encoding principles apply. The concrete encoding rules depend on 
the concrete constellation structure. See [ I  I ] for more examples. 

In evaluating the error probability of the differentially coded QAM, a high SNR 
is assumed. This implies the errors are dominantly the errors made between points 
separated by the minimum distance dmin. Thus we only consider this type of error in 
approximating the error probability. The above differentia1 encoding schemes pro- 
duce two types of symbol errors: those between symbols within the same sector and 
those between symbols of different sectors. In the first type of error, the first N bits 
are not affected since they are the same for all points in the sector, Thus only one or 
more of the (K - N )  bits will be in error, depending on how the symbols in the sec- 
tor have been Gray coded. If the symbols in the sector are perfectly Gray coded, like 
in the square 16-QAM case, only one bit will be in error. If the symbols in the sec- 
tor are not perfectly Gray coded, more than one bit on average will be in error. Then 
we say there is a Gray code penalty for the imperfect Gray coding. For this type of 
error, no error propagation exists since the differentially encoded bits are unaffected. 
In the second type of error, bit errors can arise from two sources. First, since the sec- 
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tor boundary has been crossed, a minimum of two bit errors will occur in the first N 
bits, one in each of two succeeding symbols (error propagation), due to the compar- 
isons used in differential decoding. Additional bit errors may occur in the remaining 
K - N bits depending on how these adjacent border symbols are encoded. While a 
perfect Gray code may be found for the symbols within a sector, a Gray code penalty 
may exist with symbols lying on the sector boundaries. 

The relationship between the error probability of the differentially encoded sys- 
tem and that of the uncoded system can be given in the following general formula 

where P b , d  is the bit error probability of the differentially coded system, and Pb is the 
bit error probability of the differentially uncoded system. The factor F is the penalty 
for differential encoding. For the differentially uncoded system, 

where P, is the symbol error probability, g 2 1 is the Gray code penalty, representing 
the average number of erroneous bits in a symbol error. For the perfect Gray coded 
system, g = 1. For the differentially encoded system, 

where f is the differentially encoded Gray code penalty, also representing the average 
number of erroneous bits in a symbol error. Thus the penalty for differential encoding 

The factor f can be found as follows. 

Wlthin a single sector draw lines between symbol points pairs separated by dmin; 
denote the total number of these lines by N1 ; 
Next to each line write the Hamming distance (number of bits which differ) 
between the two signal points; denote the sum of all such Hamming distances in 
the sector by HI; 
Draw lines between points lying on one of the sector boundaries with points in 
the adjacent sectors separated by dmin; denote the number of these lines by N2 
and denote the sum of their Hamming distances by H2. 
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Then the differential encoding penalty is 

where the third term in the numerator is due to error propagation in the differentially 
encoded bits. The numerator is in fact the total number of bit errors when all possible 
symbol errors are considered, and the denominator is in fact the total number of 
possible symbol errors. Thus f is the average bit errors per symbol. Note that HI /AT1 
is the Gray code penalty within a sector and H2/;Y2 is the Gray code penalty across 
the boundary. 

For the differentially encoded square 16-QAM in Figure 8.18, N1 = 4 and 
H1 = 4 while N2 = 2 and Hz = 2, Thus f = (4 + 2 + 4)/(4 + 2) = 1016 = 1.67. 
For general K-bit (K even) square QAM with the first two bits differentially encoded 
for resolving the quadrant ambiguity and the remaining K - 2 bits Gray coded, it 
can be shown that 

For the above general case g = 1 so that from (8.70) and (8.69) 

K / 2  (square QAM, K even) F = 1 + 2 K / 2 - 1 7  

Thus F goes from two for K = 2 (4-QAM or QPSK) to nearly one for very large 
K. This penalty of two or less is insignificant in term of increase in SNR, which is 
usually a fraction of a dB. 

8.10 SUMMARY 

We discussed M-ary amplitude modulation (MAM) in Section 8.1. In a concise fash- 
ion, we covered all aspects of MAM, including PSD, optimum detection, error prob- 
ability, modulator and demodulator. The discussion was general in that the results are 
applicable to both baseband and bandpass cases, and in the case of bandpass MAM, 
pulse shaping was also included. We also showed the equivalence between the corre- 
Iator receiver and matched filter receiver even when pulse shaping is involved. There 
was a subsection devoted to OOK. It is often the first modulation scheme introduced 
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in textbooks due to its historical importance. The discussion of MAM primarily 
served as a foundation for understanding QAM. However, at the same time MAM's 
properties were compared with MPSK, showing the superiority of MPSK. The bulk 
of this chapter of course is for QAM. We defined QAM signal and constellation in 
Section 8.2 where the orthogonality of the two components of the QAM was proved 
in the presence of the pulse-shaping function. hrious QAM constellations were in- 
troduced in Section 8.3 in order to give the reader an overview of the QAM constel- 
lations. But only the square QAM constellations were described in detail since they 
are among the most efficient yet their implementations are the simplest. In Section 
8.4, QAM's PSD was derived. It turned out that the shape of PSD of QAM is solely 
determined by the pulse-shaping function. This property is the same as that of MAM 
and MPSK. In Sections 8.5 and 8.6 we presented modulator and demodulator based 
on those of MAM. The modulator is almost identical to that of MPSK except that 
the level settings of the level generators are different. Gray coding is usually used 
for mapping from data n-tuples to QAM points for minimizing bit errors. The de- 
modulator is also similar to the MPSK demodulator. The error probability of QAM 
was derived in Section 8.7 based on that of MAM. It was shown that QAM requires 
less signal-to-noise ratios than MPSK for achieving the same error performance. At 
M = 4 level, they are the same since CPSK is 4-QAM. Above A l  = 4, the signal 
power savings range from 1.65 to 16 dB for hl = 8,16, ..., 256. The savings in- 
crease by approximately 3 dB for doubling the number of points in the constellation. 
This is what makes QAM very attractive. Synchronization for QAM was discussed 
in Section 8.8. The clock recovery of QAM is not a particular problem. The clock 
recovery techniques in Chapter 4 are applicable. The carrier recovery of QAM has 
its particular feature. It turned out that it does not require Mth-power nonlinearity 
as in the MPSK case. It requires a fourth-power loop, but a squaring loop does not 
work. We showed in detail why this is true. We also described a decision-directed 
carrier recovery system which does not rely on nonlinearity at all. Finally in Section 
8.9 we discussed differential coding for QAM for the purpose of phase ambiguity 
elimination. 

The application of QAM, particularly the star QAM, to fading channels will be 
discussed in the Chapter 10. 

8.11 APPENDIX 8A 

We form the fourth power of si(t): 
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To simplify the derivation we denote 

x = Ail cos wct 

y = -Aiz sin wCt 

Note that E { x )  = E{y} = 0 since E { A i l }  = E { A i 2 }  = 0. Using x and y 
notations we can write (8.7 1) as 

where E { ~ X ~ ~ )  = 4~ { X ~ ) E { ~ }  = 0 and 13{4xy3) = ~ E { X ) E { ~ ~ }  = 0. Using 
trigonometrical identities we obtain 

1 
= - A : ~  (1 + 2 cos 2wct + cos2 2wct) 

4 

1 
= - ~f~ (3 + 4 cos 2wct + cos 4wct) 

8 

1 
= -A:, (1 - 2 cos 2wct + cos2 2w,t) 

4 
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1 1 
= 6 ~ : ~  - (1 + cos 2wct) - (1 - cos 2w,t) 

2 2 

Substituting (8.73), (8.74), and (8.75) into (8.72), we obtain 

1 
E { S ~  ( t ) }  = -p4(t) [E{A;', )(3 + 4 cos 2w,t + cos 4w,t) 

8 
+ E { A : ~ ) ( ~  - 4 cos 2w,t + cos 4wct)] 

3 
+ - p 4 ( t ) ~ { ~ ~ l }  E { A ? ~ } ( I  - cos 4wct) 
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Chapter 9 

Nonconstant-Envelope Bandwidth-Efficien t 
Modulations 

The schemes we studied in Chapters 5 , 6 ,  and 7 are all bandwidth-efficient modula- 
tion schemes with constant envelopes. The next natural step is to explore the possi- 
bility of obtaining high bandwidth efficiency using nonconstant-envelope schemes. 
QAM is very bandwidth efficient, but its amplitude can vary considerably. This 
makes it unsuitable for transmitters with power amplifiers that must operate in a 
nonlinear region for maximum efficiency. A lot of effort has been devoted to find- 
ing bandwidth-efficient schemes without too much amplitude variations. This can 
be achieved by using pulse shaping in quadrature modulation or other means. 

In this chapter modulation schemes with compact spectrum, low spectral spread- 
ing caused by nonlinear amplification, good error performance, and simple hardware 
implementation are presented. In describing these nonconstant-envelope schemes, 
the emphasis is on the pulse shape and spectral properties. The eye diagram of each 
scheme is also presented since it is critical in demodulation if a conventional OQPSK- 
type demodulator is used. Even though the OQPSK-type demodulator is not opti- 
mum for these schemes, it is often suggested due to its simplicity and small loss in 
error performance. The error performance loss with respect to MSK is evaluated. 

Since the majority of the schemes presented in this chapter are two-symbol- 
time(2TJ schemes, we have a general discussion of this type of scheme in Section 
9.1 . Particularly, an optimum receiver for the AWGN channel is developed in this 
section. Individual schemes are described in the sections that follow. Section 9.2 
describes the quasi-bandlimited modulation (QBL) I]. The quadrature overlapped 
raised-cosine modulation (QORC), and its staggered version (SQORC) proposed in 
[2] are described in Section 9.3. Later a scheme named modified QORC (MQORC) 
was proposed in 131. MQORC uses a different pulse-shaping function which is sim- 
ilar to that of SFSK (sinusoidal frequency shift keying, see Section 5.9). This pulse 
improves the spectrum further, however the pulse involves Bessel functions and it 
is not easy to implement. We will not include this scheme here. But the quadrature 



460 Digital Modulation Techniques 

overlapped squared raised-cosine (QOSRC) modulation [4] is simple to realize. It is 
also described in Section 9.3. The research group led by Dr. Kamilo Feher devel- 
oped a family of power-efficient coherent nonconstant-envelope modems. Prior to 
a hard limiter, the envelope of the modulated signals is not constant, but a hard lim- 
iter inserted into the transmission channel does not significantly spread the processed 
signal spectrum. Thus, these techniques are suitable for nonlinearly amplified satel- 
lite channels in a densely packed ACI (adjacent channel interference) environment. 
This family of modulation schemes include IJF (intersymbol-interference/j itter-free) 
OQPSK [ s ] ,  TSI (two-symbol-interval) OQPSK [6 ] ,  SQAM (superposed-QAM) [7], 
and XPSK (crosscorrelated QPSK) (81. Among them, the XPSK is the most complex 
one. XPSK involves 16 different cross-correlated signal combinations using 14 dif- 
ferent signal patterns. It can achieve almost constant signal envelope. Its spectrum 
is similar to that of TFM (tamed frequency modulation, see Chapter 6 for TFM). 
However, due to its complex signal format, it may not be a preferable choice over 
other schemes. We will not include it here. The other Feher's schemes all use one 
pulse pattern. IJF-OQPSK and TSI-OQPSK are discussed in Section 9.4. SQAM is 
discussed in Section 9.5. Section 9.6 describes a new approach of achieving com- 
pact spectrum, other than pulse shaping. The scheme is called quadrature quadrature 
phase shift keying (Q~PSK). Section 9.7 summarizes this chapter. 

9.1 TWO-SYMBOL-PERIOD SCHEMES AND OPTIMUM 
DEMODULATOR 

The majority of the schemes in this chapter are 2Ts schemes, they can be expressed 
as 

where 

where Tb is the bit time interval corresponding to the input data sequence {ak E 
(- 1, +1) } that has been demultiplexed into {Ik) and {Qk ). It is clear that each data 
symbol lasts for a duration of Ts = 2Tb in I- and Q-channels. Each data is weighted 
by a pulse-shaping function p ( t )  which has a duration of ZT, = 4Tb. If the delay 
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T is zero we have a nonstaggered scheme, otherwise we have a staggered scheme. 
Usually, if a staggered scheme is desired, T is set to be Tb. In this case, due to the 
staggering of the I- and Q-channels, the symbol duration of the modulated signal 
is Tb instead of 2Tb despite that the symbol durations are 2Tb for sr ( t )  and SQ (1). 
However, demodulation must be performed in a 2Tb duration. 

The modulators for 2Ts schemes are the same as that of QPSWOQPSK, except 
that a baseband signal processor (filter) is inserted in each channel prior to the carrier 
multiplier. The processor weights the data by the symbol pulse and overlaps them 
by Ts. This can be realized by using a filter with an impulse response of the pulse- 
shaping function ( p ( t ) ) .  In the following sections of 2Ts schemes, we will not repeat 
this statement again. 

By a reasoning similar to that in Section 8.2 for QAM, the I- and Q-channel corn- 
ponents in (9.1) are essentially orthogonal for f, > > l /Ts .  Thus the receiver will 
have the same quadrature structure as in MSK (Figure 5.9). That is, an inphase car- 
rier in I-channel and a quadrature carrier in Q-channel are used to separate the I- and 
Q-channel data streams. However, the post-separation processing is different, which 
is based on the possible composite waveforms in a 2Tb-symbol duration in the I- or 
Q-channel data stream. In the detection interval [O, 2Tb] (or any [ 2 k c ,  2(k + l)Tb] 
interval), the I-channel baseband signal is (assuming p ( t )  is defined on [-2Tb, 2Tb]) 

Thus there are four possible waveforms of sr ( t ) .  But two are just negatives of the 
other two. 

The energy of each signal is 

The Q-channel waveforms are just the delayed-by-T version of the I-channel wave- 
forms. The following discussion is based on the I-channel. The results are obviously 
applicable to the Q-channel provided proper symbol timing is maintained (delay T 

with respect to I-channel, T = 0 for nonstaggered schemes). 
The post-separation demodulator thus can be based on these four waveforms. 

As usual we assume the noise n(t)  at the input of the entire demodulator is AWGN 
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with zero mean and a two-sided PSD of N,/2.  The received signal at any moment 
is 

But as far as the detection of the I-channel signal is concerned, the Q-channel signal 
does not have any effect. Thus to the I-channel the received signal can be written as 

where 

The problem now becomes a 4-ary signal detection problem with different signal 
energies. From (B.38) the sufficient statistic is 

where 

q ( t )  = ~ ( t )  cos 2?r fct 

is the post-separation signal which is obtained by a down-convertor with a reference 
signal of cos 27r f,t . 

where Pi = 114 for equally likely data. 

Since the first term in ci is the same for all four signals, it can be eliminated. The 
detector chooses the largest of Zi and the corresponding data pattern can be identified. 
From (9.4) we know that only two correlators for rl and rz are needed. That is 
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Figure 9.1 Correlation detector for 2TS schemes with overlapping pulses. 

Figure 9.1 shows the correlation detector which can be used for I- or Q-channel 
post-separation processing. The detector input is the post-separation signal ( t )  or 
TQ ( t ) .  The detector output is directly the first data symbol in the data pattern since 
once maximum li is determined the first data symbol is also determined. 

The upper bound of the symbol error probability of this optimum receiver has 
been given in Appendix B (B.43), that is, 

where 

d!: = /, - [si ( t )  - sj (t)12dt 
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Usually the pulse p ( t )  is symmetrical about t = 0 (if p ( t )  is defined in [-2Tb, 2Tb]). 
Then fi ( t )  and f4 (t) are even functions about t = Tb and f2 (t) and f3 (t) are odd 
functions about t = Tb. As a result, fi (t)  is orthogonal to f 2 ( t )  and f 3 ( t )  in 10, 2Tb]. 
So is f4 (t) to f2 ( t )  and f3(t). That is 

We check one example: 

The last step holds because p ( t )  is symmetrical about t = 0. The orthogonality of 
other pairs can be similarly verified. From (9.7) and (9.8), and noticing that Eq = El 
and E3 = Ez, we have 

Since are usually close, the distance (El +E2) /2  is the minimum (dm,,). At high 
signal-to-noise ratio, the larger distance terms may be ignored. If that is the case, 
only the four dmin terms need be considered. They are d12,  d13,d24. and d34. Their 
value is 

where E,,, and Eb are average symbol and bit energy, respectively. Thus the symbol 
error probability is approximately 

Furthermore, among the four error events associated with the dmin terms, two events 
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(events associated with d l z  and d34) actually do not cause bit errors (see (9.4) where 
fi (t) and f2(t) have the same first bit, so do f3 ( t )  and f4(t)). Thus we have the bit 
error probability 

This is two times that of MSK. However, in terms of SNR required for the same 
8, this is only slightly inferior to MSK (about 0.3 dB at W5). Sometimes the 
second smallest distance is too close to dmin to be ignored. Then the error probability 
expression has to include the term associated with the second smallest distance. 

The synchronization schemes for 2Ts schemes are in general the same as those 
of QPSWOQPSK since all of them are quadrature modulations. Thus the carrier and 
symbol synchronization techniques described in Chapter 4 can be applied. Recall 
MSK has a combined carrier and symbol recovery circuit (Figure 5.11) due to its 
unique spectral components. It is also possible to exploit the spectral properties of 
2Ts schemes to obtain better synchronization schemes. 

9.2 QUASI-BANDLIMITED MODULATION 

Amoroso proposed the use of quasi-bandlimited pulses in MSK-type modulation to 
improve the spectrum for the near-center region (f 5 1 ITb), including reducing the 
main lobe width [I]. The proposed pulses are 

These pulses will not maintain a constant envelope for the MSK-type signal which 
they generate. But a bandpass hard limiter will be introduced just before transmission 
to ensure envelope constancy. The term "quasi-bandlimited" refers to the fact that 
the pulse duration is relaxed to 4Tb from 2Tb of the MSK, thus the bandwidth is 
somewhat more limited, but not completely limited as in the case where the duration 
is allowed to extend to h o .  

Figure 9.2(a) shows p (t) for n = 3 (denoted as QBL-3) in comparison with 
the pulse of MSK. The QBL pulse has a duration of 4Tb. From (9.2) and (9.3), 
the adjacent pulses in each channel are overlapped by a length of 2Tb. However, if 
sampled at center of each pulse (i.e., at t = 2kTb for the I-channel and t = ( 2 k  + 
l)Tb for the Q-channel), there is no intersymbol interference in the samples (Figure 
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-2 0 2 3 4 5 
fib fib 

(a) QBL-3 amplitude pulse (b) Eye pattern of QBL-3 

Figure 9.2 (a) QBL-3 amplitude pulse in comparison with MSK amplitude pulse, (b) eye pattern of 
QBL-3 for I-channel. 

9.2(b)). 
The modulated QBL signal is given by (9.1) to (9.3). The pulse sequences in 

the I- and Q-channel are staggered by a length of Tb. Since the pulse occupies a 
duration of 4Tb, in any period of Tb, there are four segments of pulses which affect 
the envelope of the modulated signal. W can use any period of T', say, the period 
[0, Tb],  to compute the amplitude distribution. In [O, T . ] ,  the four pulse segments are 
from p(t), p(t - 2T'), p( t  + Tb),  p(t - T b )  The first two affect the I-channel signal, 
and the last two affect the Q-channel signal. Thus the amplitude of the QBL signal 
is 

There are 16 different combinations of [ Io ,  Il , Q - 1, Qo] . However, one-half of them 
is just the negated version of another half. We only need to compute the amplitude for 
the first half. For n = 3, the possible envelopes found by numerical computation are 
shown in Figure 9.3. The minimum amplitude is Amin = 0.994 and the maximum 
amplitude is Amax = 1.125. The minimum to maximum ratio is 



Chapter 9 Noneonstant-Envelope Bandwidth-Eficient Modulutiom 

Figure 9.3 Possible envelopes of QBL-3 signal (n = 3). 

Amoroso considered a hard limiter characterized by 

Then the amplitude of y ( t )  is always one. 
The spectral analysis is quite involved [I]. Nk only present the results here. 

Figure 9.4 shows the power spectral densities with hard limiting, for n = 1,2,3,4. 
It is seen that n = 3 (QBL-3) is the best overall. Figure 9.5 compares the PSDs of 
QBL-3 with those of SFSK and MSK. It is seen that QBL-3 is much better in terms 
of having lower sidelobes. The hard limiting spreads the PSD slightly. 

The implementation of QBL suggested in (11 is to use the serial MSK modulator 
and demodulator given in Figure 5.12. The only change is the conversion filter H (  f ) 
in the transmitter, which must satisfy the following expression to produce the desired 
spectral shape 

where Q, ( f )  is the QBL signal spectrum, H( f )  is the conversion filter transfer func- 
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Normalized Frequency, fib 

Figure 9.4 Power spectral densities of QBL-n with hard limiting, for n = 1,2,3,4. From [I] .  Copy- 
right @ 1979 IEEE. 

Table 9.1 Losses of power efficiency for QBL signals with respect to MSK. 

n 

1 

2 
3 

4 

Loss (dB) 
withhard 
limiting 

8.16 

2.13 

0.66 

, 0.15 

Loss (dB) 
no 
limiting 

6.53 
1.83 

0.54 

, 0.12 

Limiter 
loss (dB) 

1.63 
0.30 
0.12 

, 0.03 

Eye Opening 
with hard 
limiting (96) 

36 
73 
88 

, 95 

7 

Eye Opening 
no limiting 

(%) 
45 - 
77 
90 

% 
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Figure 9.5 Power spectral densities for classical MSK, SFSK, and QBL-n for n = 3 with hard limiting, 
and n = 3 without limiting. From [I]. Copyright @ 1979 IEEE. 

tion, and Q B P S K (  f )  is the spectrum of the BPSK signal which enters the filter. At 
the receiver a filter matched to p( t )  is used. This receiver is not optimum since the 
matched filter does not match the envelopes of the received signal. 

The loss in power efficiency in comparison with MSK is shown in Table 9.1. The 
eye opening is defmed as the ratio of smallest detected voltage to mean detected volt- 
age in I- or Q-channel baseband signal. A matched filter is assumed in the receiver, 
which introduces intersymbol interference. This accounts for the less than 100% eye 
openings even without hard limiting. The signal would always have 100% eye open- 
ings if there were no hard limiting and filtering (Figure 9.2(b)). The table shows that 
the losses range from a kaction of a dB to many dBs. It is clear that the n = 3 case is 
the best choice since its loss is only a fraction of a dB while its PSD is the most com- 
pact one. Its eye opening loss is also small, about 10%. According to 111, it appears 
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that much of the loss is due to intersymbol interference of the commonly encoun- 
tered linear type, suggesting that a moderate amount of transversal filtering could 
reduce the loss considerably. 

If QBL is used in an AWGN channel, the optimum demodulator is the one given 
in Section 9.1. The four waveforms are 

For n = 3 (QBL-3), the energies of these signal are 

The energies of si (t) are 

and the distances of si (t) are 

The upper bound on the symbol error probability is 

At high signal-to-noise ratio, since &,,, = LITb is much smaller (2.6 dB) than the 
next smallest distance, the Pb given by (9.10) is applicable to QBL signals. That is, 

This translates to a fraction of dB increase in SNR for the same Pb when compared 
with MSK. 
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Figure 9.6 (a) Pulse shapes, (b) eye patterns for QORC/SQORC (solid line) and QOSRC (dotted line). 

9.3 QORC, SQORC, AND QOSRC 

Quadrature overlapped raised-cosine modulation (QORC) and its staggered version 
(SQORC) were proposed in [2]. The amplitude pulse-shaping function (or baseband 
pulse) is the raised-cosine pulse given by 

The QORC/SQORC signal's I- and Q-channel data streams take the form of overlap- 
ping raised-cosine pulse shapes, that is, q ( t )  and ~ ( t )  are given by (9.2) and (9.3). 
If r = 0, the signal is QORC. If T = Tb, the signal becomes SQORC. 

Later the pulse shape in (9.1 8) was generalized to 141 

Note that the n = 2 case is the pulse for QORC and that the n = 4 case is named 
as quadrature overlapped squared raised-cosine (QOSRC) modulation. The I- and 
Q-channel signals are staggered by Tb in QOSRC. The pulses for n = 1 2: . . . , 5  are 
shown in Figure 9.6. Also shown are the eye patterns in [4Tb, 8Tb] or any [2kTb, 2 ( k +  
l)Tb] interval. The inner eye of QOSRC coincides with that of QORCISQORC. If 
sampled at t = 2kTb, there is no ISI. 
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Figure 9.7 Possible envelopes for QORC. 

Using the same technique for QBL, the amplitude variation of QORC, SQORC, 
and QOSRC can be found. For QORC, there is no staggering, the amplitude is given 
by 

It is found that A,, = and Amin = 0. Figure 9.7 shows the three possible 
envelopes for QORC. It shows that the envelopes may descend down to zero at bit 
boundaries. For SQORC, there is staggering, the amplitude is 

A@) = J[l,p(t) + I - ~ p ( t  + 2Ta)12 + [Q-rp(t + Tb) + Q-2p(t + 3G)12 
(9.20) 

It is found that A,, = fi and Amin = 1. Thus 

For QOSRC, there is staggering too, amplitude formula is again (9.20). It is found 
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Figure 9.8 Possible envelopes for SQORC and QOSRC. 

that A,, = 1.118 and Amin = 1. Thus 

Figure 9.8 shows the four possible envelopes for SQORC and QOSRC, respectively. 
The flat line A ( t )  = 1 is for both cases. 

The power spectral density expression of QORC/SQORC derived in [2] is 

where PC is the power of the modulated signal. Comparing (9.21) with (4.38) and 
(5.14) reveals that except for a constant, the PSD of QORClSQORC is the product of 
the PSDs of MSK and QPSWOQPSK. The PSD is shown in Figure 9.9 in comparison 
with those of QPSWOQPSK and MSK. The PSD of QORC/SQORC retains the same 
first null as QPSWOQPSK. The remaining nulls occur twice as often as they do for 
QPSK/OQPSK. From the denominators of (9.2 1 ) we can see the sidelobe roll-off rate 
is proportional to f -6 which is the product of that of QPSWOQPSK (f -*) and that 
of MSK (f -4). 
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Figure 9.9 PSD of QORC/SQORC. 

The PSDs for QOSRC and other pulses given in (9.19) were obtained by numer- 
ical Fourier transform in [4) and are shown in Figure 9.10. It is seen that all PSDs 
have almost the same characteristics in the region 0 5 fTb 5 0.7 while the side- 
lobes of the n = 4 case (QOSRC) drop much faster than others, including that of 
QORC/SQORC. 

The error performance of QORC/SQORC in a nonlinear channel was evaluated 
through computer simulation in [2 ]  The channel consists of an input filter followed 
by a TWT (traveling wave tube) amplifier. The two types of input filter are a seven- 
pole Chebyshev design with a 3 dB RF bandwidth of 56 MHz and a 56 MHz phase 
equalized filter. The demodulator is the QPSWOQPSK type demodulator with a 
third-order Butterworth filter following the carrier multiplier in I- and Q-channel, 
respectively. The BT products were optimized as the data rate was varied. Simulation 
results show that QORC and QPSK perform equally well for the entire bit rate range 
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2 3 4 

fTb , normalized frequency 

Figure 9.10 PSDs of modulated signds using the pulses in (9.19). From [4]! Copyright @ 1985 IEEE. 

(40 to 120 Mbps). MSK performs about 0.7 dB better at lower rates and 0.5 to 1.0 dB 
worse at higher rates. SQPSK performs equally well with QORC at lower rates but 
about 1.0 dB worse at high rates. The error performance of QOSRC is considered 
on a hard-limited satellite channel when both uplink and downlink additive Gaussian 
noise and intersymbol interference caused by transmitter filtering are present 141. It 
was found that the error performance of QOSRC is better than that of QORC. 

If QORC/SQORC is used in an AWGN channel, the optimum demodulator given 
in Figure 9.1 can be used. The four waveforms in (0, 2Tb] (or [Tb, 3Tb] for Q-channel 
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of SQORC) are 
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The energies of these signals are 

The energies of si ( t )  are 

and the distances of si (t) are 

The upper bound on the symbol error probability is 

Since dki, = 1.5Tb is only about 1.2 dB smaller than the second smallest distance, 
the Pb expression should include the second smallest distance. Among the four error 
events associated with the dmin terms, two events (events associated with d 1 2  and 
d34) actually do not cause bit errors. The error event associated with the second 
smallest distance (d23)  does make one bit error. From (9.24) we see that Eb = 

Ea,,/2 = 0.375Tb, thus 

This is slightly higher than MSK and QBL. 
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For QOSRC we can find in 10, 2Tb] for 1-channel (or [Tb. 3Tb] for Q-channel) 

The energy of each signal is 

The energies of si ( t )  are 

and the distances of si ( t )  are 

The upper bound on the symbol error probability is 

At high signal-to-noise ratio, since d:,, = 1.094Tb is much smaller (2.6 dB) than 
the next smallest distance, the Pb given by (9.10) is applicable to QOSRC signal. 
That is, 

Thus Pb of QOSRC is the same as that of QBL and is slightly higher than that of 
MSK. 
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9.4 IJF-OQPSK AND TSI-OQPSK 

Intersymbol-interference/jitter-free OQPSK (IJF-OQPSK) was first proposed in is]. 
An example of intersymbol-interference-free and jitter-free baseband signal and its 
generator are shown in Figure 9.10(a) and (b), respectively. When sampled at symbol 
boundaries, the sampled signal is clearly ISI-free. It is also jitter-free since there is 
no abrupt amplitude change at any sampling instant so that any symbol timing jitter 
essentially causes no errors in sampled signals. From the figure we can see that the 
filtered data stream consists of four pulse shapes: f l and k s in(xt /Ts)  defined in 
[-T' 12,  T'/2] where Ts = 2Tb is the symbol duration.' Therefore we need only two 
pulse shapes to define an intersymbol-interference/jitter-free baseband signal. One 
is an even function s,(t) and the other is an odd function s&) with equal nonzero 
amplitude at the symbol boundaries, that is, 

The encoding of binary data stream {ak} into an IJF data stream { y k ( t ) )  obeys the 
following rules 

where gk (t) is the waveform in [ ( k  - l)Ts. kTs] .  In Figure 9.1 1, 

and s, (t) = s,(t) = 1 for t = Ts 12. The encoding rules are clearly demonstrated 
by the example in Figure 9.1 1. 

When I- and Q-channel data of an OQPSK modulator undergo the above data 
encoding and pulse shaping, we obtain the scheme named IJF-OQPSK in the litera- 
ture. 

This early IJF-OQPSK scheme was extended to a class of schemes called two- 
symbol-interval hard limited OQPSK (TSI-OQPSK) (61. This class of two-symbol- 

In th is  section and the next section we use Ts instead of Tb as the basic time interval in order to be 
consistent with the literature that proposed the schemes. This enables the reader to refer to the literature 
without confusion caused by different basic time intervals. 
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Figure 9.11 Intersymbol-interference/jitter-free signaling. From [9, p. 3431. Copyright @ 1987 Kamilo 
Feher. 
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interval amplitude pulse-shaping functions is defined as 

{ [ I -  
sin{ A ( l t l - T s / 2 ) }  

p"qt) = sin(*) (9.37) 
0. elsewhere n =  1,2,  .... 

The pulse lasts for two symbol durations in the I- and Q-channel. They are over- 
lapped in the baseband signal streams. By choosing different values of n, a class of 
TSI-OQPSK schemes result. Figure 9.12(a) shows this class of pulses. When n = 1, 
(9.37) becomes a raised-cosine hnction 

1 [I + COS(E)] , -Ts 5 t 5 Ts 
( t )  = { 

0, elsewhere 

This is the same pulse defined in (9.18). Therefore TSI-OQPSK (n = 1) is SQORC 
and as will be shown next, it is also the IJF-OQPSK defined in (9.36). 

To show that this class of pulses can realize an IJF scheme, we notice that in the 
interval of [O! T, 1, the composite waveform is one of the four waveforms: A$") (t) ;t 
p ( n )  ( t  - Ts). Using (9.37) we have 

and 

The other two waveforms are just their negatives, respectively. These waveforms are 
just the shifted-by-Ts/2 version of the odd and even functions required by the IJF 
property. That is, the odd and even functions that satisfy the IJF conditions in (9.34) 
are 

Ts Ts 
s y  ( t )  = p ( n )  ( t  + T )  + p(n)  ( t  - -) = 

2 

and 

T9 " = {  
s p  ( t )  = ( t  + ) + p(n) ( t  - -) 

2 

Thus the waveforms of the baseband data stream 
the curved parts obeying the functions f SF) ( t ) .  

- - 

0, elsewhere 

are similar to Figure 9.11(a) with 
Figure 9.12(b, c) shows the even 

and odd functions given in (9.39) and (9.40). Note that when n = 1, the odd and 
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Figure 9.12 TSI pulses and odd and even functions. 
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(a) Amplitudes of TSI-OQPSK (b) Eye patterns of TSI-OQPSK 

Figure 9.13 Amplitudes and eye patterns of TSI-OQPSK. 

even pulses are the same as those in (9.36), that is, IJF-OQPSK is a special case of 
TSI-OQPSK. Its TSI pulse is a raised-cosine function given in (9.38). 

This class of schemes are nonconstant envelope schemes. Figure 9.13 shows the 
possible amplitudes and the eye diagrams (the two flat lines in the eye diagrams are 
for any value of n) . It is found that for n = 1, A,, = 4 and Amin = 1. Thus 

AminlAm,  - 0.7 

For n = 2, A,, = and Amin = 0.765. 

When n increases further the amplitude and eye diagrams change very little since 
the pulse shapes change very little. From the eye pattems it is clear that this class of 
schemes is ISLfree and jitter-fiee if sampled at the center of the eye diagram. 

The PSDs of TSI-OQPSK baseband signals are shown in Figure 9.14. It is seen 
that n = 1 case (IJF-OQPSK) has the lowest sidelobes. However, TSI signals with 
n = 2,3, . . . have a narrower main lobe than the one with n = I. Figure 9.15 is the 
PSDs after nonlinear amplification. It is seen that the TSI's spectral components that 
cause significant ACI (adjacent channel interference) are about 10 dB lower than 
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Figure 9.14 PSDs of TSI signals. From [6]. Copyright @ 1983 IEEE. 

QPSK and 5 dB lower than OQPSK. 
Similar to QBL and QORCISQORC, the optimum receiver of Section 9.1 can be 

used for TSI-OQPSK signals, including the IJF-OQPSK signal, in an AWGN chan- 
nel. TSI-OQPSK (n = I), IJF-OQPSK, and SQORC are identical. The bit error 
probability of SQORC has been proven to be essentially the same as that of MSK. 
Thus all of them have a bit error probability essentially equal to that of MSK. 

For TSI-OQPSK (n = 2), substituting (9.37) into (9.4), we find in [O. Ts] for 
I-channel (or [Ts /2, 3Ts /2] for Q-channel) 
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- QPSK 
---- OQPSK 

+ TSI-OQPSK-I (same us SQORC and 
UF-OQHK 1 
TSI-OQPSK-2 

Figure 9.15 Nonlinearly amplified (saturated HPA with O-dB input back off) PSDs of TS1 signals. From 
[lo1 Copyright @ 1984 IEEE. 

The energy of each signal is 

Here we express Ei in terms of Tb in order that they can be readily compared with 
those of previously described schemes. The energies of si (t) are 
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and the distances of si (t) are 

The upper bound on the symbol error probability is 

Since dLi, = 1.363Tb is only about 0.28 dB smaller than the second smallest dis- 
tance, the f i  expression should include the second smallest distance. Among the 
four error events associated with the dmin terms, two events (events associated with 
dI2 and d 4  actually do not cause bit errors. The error event associated with the sec- 
ond smallest distance (d23 = 1.454Tb) does make one bit error. From (9.43) we see 
that Eb = Ea,,/2 = 0.34075Tb. The Pb is approximated as 

This is slightly higher than MSK and QBL. 
The error performance of TSI-OQPSK signals was evaluated through simulation 

for satellite channels with saturated HPA (high power amplifier) or cascaded hard- 
limiter and HPA in an ACI environment with AWGN [lo]. The demodulator in the 
simulation is just the ordinary OQPSK demodulator with proper filtering (see [lo] for 
details). Due to the more compact PSDs of the TSI-OQPSK signals, it was found 
that in the ACI environment the degradation with respect to ideal channel is less for 
TSI-OQPSK signals than for conventional QPSK and OQPSK (Figures 9.16 to 9.18). 
In the figures, A f is the carrier frequency spacing between two adjacent channels. 
The effect of the spectral advantages of TSI-OQPSK schemes becomes even more 
evident when the received modulated carrier power of the main channel is below 
that of the adjacent channels. This situation occurs in the case of an uplink fade 
of the desired channel in satellite communications. Figure 9.19 presents examples 
of &/No degradation as a function of the fade depth of the desired channel. As 
the main channel is attenuated, the ACI becomes predominant and for this reason 
the modulation technique which creates less ACI provides better performance. As 
an example, at a spacing of 92% of the bit rate, with a fade depth of 12 dB, the 
TSI-OQPSK-2 only has a degradation of 2 dB, whereas the degradation of QPSK is 
more than 7 dB (Figure 9.19(a)). With tighter spacing, the differences are even more 
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Figure 9.16 E b / N ,  degradation (at f i  = lod6) of ideal hard-limited QPSK. OQPSK. and 
TSI-OQPSK schemes in an ACI and AWGN environment. From [lo]. Copyright @ 1984 IEEE. 
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Figure 9.17 Eb/N,  degradation (at Pb = of saturated HPA-QPSK, OQPSK, and TSI-OQPSK 
schemes in an ACI and AWGN environment. From [lo) Copyright @ 1984 IEEE. 
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Figure 9.18 &/No degradation (at f i  = of a saturated HPA-QPSK, OQPSK, and cascaded 
hard-limiter-HPA TSI-OQPSK schemes in an ACI and AWGN environment. From [IOJ.  Copyright @ 

1984 IEEE. 
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Figure 9.19 Eb /No degradation versus fade depth of the desired channel: (a) spacing of 92% of the bit 
rate. compared to E b / N ,  = 8.4 dB for P. = (b) spacing of 77% of the bit rate. compared to 
E h / N o  = 8.4 dB for P, = From [lo]. Copyright @ 1984 IEEE. 
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evident and TSI-OQPSK-2 is better than the others at all fade depth (Figure 9.19(b) 
where the spacing is 77%). 

9.5 SUPERPOSED-QAM 

The superposed-QAM (SQAM) is proposed in 171. The amplitude pulse-shaping 
hnction consists of two superposed raised-cosine functions and is given by 

where A is a constant within [0.5,1.5]. When A = 1, the SQAM is equal to IJF- 
OQPSK or SQORC. But by choosing different values of A we can obtain a better 
spectrum than that of IJF-OQPSK or SQORC. Figure 9.20 shows the SQAM pulse 
shapes and the eye patterns. The inner curves of all three eye patterns coincide. 
Figure 9.21 shows amplitudes for different values of A. The flat line A = 1 is for 
both cases. It is found that 

Amin = 1, Am, = 1.077, Amin/Amax = 0.93? for A = 0.7 

Amin  = 1, Am, = 1.166, Amin/Ama = 0.86, for A = 0.8 

Amin = 1, Am, = 1.281, Ami,/AmaX = 0.78, for A = 0.9 

When A = 1. the scheme is equal to SQORC, we recall that A,, = fi and 
Amin = 1. the ratio is 0.7. 

The normalized PSD expression of the equiprobable SQAM baseband signal is 
given by [7.11] 

1 1 A - 1 sin 27~ f Ts + ) =  ( *T:f2 1 - T,2fZ 
(9.48) 

Figure 9.22 shows the PSD of SQAM (A = 0.8) in comparison with others in a 
hard-limited channel. Figure 9.23 shows the fractional out-of-band power of SQAM 
with various A values and others in a hard-limited channel. From Figure 9.23 we can 
see that a decrease of A leads to a faster spectral roll-off at higher frequencies at the 
expense of a slightly wider main lobe. SQAM has spectral advantages over QPSK 
and MSK, and comparable spectral properties to TFM and QBL. 

The error performance of SQAM was evaluated for a hard-limited channel by 
simulation in [7]. The demodulator in the simulation is the same as an OQPSK de- 
modulator where a fourth-order Butterworth low-pass filter is used after the carrier 
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Figure 9.20 Pulse shapes and eye patterns of SQAM. 

Figure 9.2 1 Amp1 itudes of SQAM. 
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Figure 9.22 PSDs of  SQAM, MSK, QBL. IJF-OQPSK (SQORC), and TFM in a nonlinear (hard-limited) 
channel. From [7]. Copyright Q 1985 IEEE. 
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Figure 9.23 Out-of-band to total power ratio of SQAM, MSK, QBL, IJF-OQPSK (SQORC). and QPSK 

in a nonlinear (hard-limited) channel. From [7]. Copyright 0 1985 IEEE. 
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multiplier. The filter's 3 dB bandwidth is f3dB  = 1.1 fiV where fAV is the Nyquist 
bandwidth which in turn is one-half of the symbol rate. The simulation results are 
given in Figure 9.24. It can be seen that the performance is the best when A = 0.8. 
It was reported that A = 0.8 is also the best for a linear channel 17). It is also shown 
that the performance of SQAM is 0.5 to 2 dB inferior to that of QPSK in a linear 
channel. 

Error performance of SQAM in a nonlinearly amplified multichannel interfer- 
ence environment was studied in [ r  I ] .  Again the demodulator is the OQPSK de- 
modulator. In the simulation model, there is a transmitter filter (Tx filter) after the 
modulator and a receiver filter (Rx filter) before the demodulator. The Tx and Rx 
fi lten used in the simulation are fourth-order Butterworth bandpass filter with an 
equivalent 3 dB low-pass bandwidth BTs = 0.5 (i.e., the bandpass filter has a 3 dB 
bandwidth of l / T s ) .  Figure 9.25 shows the degradation (compared to Eb/No = 8.4 
dB at Pb = 10-9 against channel spacing for hard-limited multichannel with two 
equal-power ACls. It is seen that SQAM (A = 0.85) has the least degradation. Fig- 
ure 9.26 shows the degradation (compared to the same Eb/N,)  against fade-depth of 
the desired channel in a hard-limited multichannel system. Again SQAM (A=0.85) 
shows a significant improvement over other schemes. 

The optimum demodulator in Figure 9.1 can be applied to SQAM. The four 
possible composite baseband signals in a symbol duration ([0, T,] for I-channel or 
[T' 12, 3Ts /2] for Q-channel) are 

The energy of each signal is 

The energies of Si (t) are 

and the distances of s i ( t )  can be calculated by (9.9). The distances for A = 0.8 and 
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Note: 
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Figure 9.24 Error performance (Pb)  of SQAM in a nonlinear (hard-limited) channel. From [7]. Copy- 
right @ 1985 IEEE. 
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(i) MSK with Tx and Rx filters (iv) OQPSK 
(ii) MSK with Rx filter only (v) SQAM: A = 0.85 

(iii) IJ F-OQPSK (SQORC) 

Figure 9.25 E b / N ,  degradation (compared to Eb/& = 8.4 dB at Pb = against channel 
spacing for hard-limited multichannel system with two equal-power ACls. From [ I 1 1  Copyright @ 1985 
IEE. 

0.9 are as follows: 

The symbol error probability upper bound can be found accordingly using (9.6). 
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(a) fade depth, d 8  

r 1 M S K  wth Rx filter only 
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Figure 9.26 E b / N ,  degradation (compared to E b / N ,  = 8.4 dB at 6 = against fade depth of 
the desired channel in hard-limited multichannel system. (a)A f = 0.83 fh (b)A f = 0.75 fh. From [ I  I ] .  

Copyright @ 1985 IEE. 
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For both cases d2i, is not too far away from the second smallest distance. This 
makes the error probability of SQAM slightly higher than that of MSK and QBL. It 
is clear that when A value decreases the distances decrease in general. Thus error 
performance degradation is expected. But this is not the case in an ACI channel as 
we have discussed already. 

9.6 QUADFLATURE QUADRATURE PSK 

Q ~ P S K  is proposed in 1121, which is a nonconstant-envelope spectrally efficient mod- 
ulation scheme. We know that QPSK is more bandwidth efficient than BPSK. The 
increase of bandwidth efficiency is achieved by increasing the number of dimensions 
of the signal basis. That is, the number of basis signals is one for BPSK and two for 
QPSK. The Q ~ P S K  uses four basis signals. Four is considered to be the maximum 
number of dimensions achievable [12. Section 1111. 

The signal set of Q ~ P S K  is 

s l ( t )  = c o s ( ~ ) c o s 2 n f c t ,  it( < T 
s 2 ( t )  = sin($) cos 2nfc t ,  ltl 5 T 
s 3 ( t ) = c o s ( ~ ) s i n 2 a f , t ,  It1 I T  (9.54) 

7rT s 4 ( t )  = sin(& sin 2~ f,t, It1 5 T 
s i ( t ) = O ,  i = 1 , 2 , 3 , 4 ,  ltl>T 

where 2T is the duration ofthe signals. The signal set can be considered as consisting 
of two carriers cos 27r f,t and sin 211 f,t and two pulse-shaping functions: 

and 

The two carriers are orthogonal and the two pulse-shaping functions are also orthog- 
onal. Note that between any two signals in the set { s i ( t ) } ,  there is a common factor 
which is either a pulse-shaping function or a carrier; the remaining factor in one sig- 
nal is in quadrature with the remaining factor in the other. This makes {s i  ( t )  } a set 
of four equal-energy orthogonal signals under the restriction that 

n ~ c = E ,  n = integer 2 2  

However, the signal set is not normalized. Each signal has an energy of 0.5 in 
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Serial 
to 

Parallel 

Figure 9.27 Q ~ P S K  modulator. 

[-T, TI. The orthogonality remains invariant with the shift of time origin by multi- 
ples of 2T. This is to say that if { s i ( t ) }  is defined by (9.54) for jtl 5 ffi instead of 
It1 5 T, then one will get orthogonality over every interval of 2T centered around 
t  = 2mT, m being an integer. This orthogonality suggests a modulation scheme 
shown in Figure 9.27. Data {ai E (H)) tiom a binary source at a bit rate Rb = 2/T 
is demultiplexed into four steams {a i ( t ) } .  Duration of each pulse in the steams is 

which is four times the bit duration. If the symbol rate is the same, the bit rate of 
the Q ~ P S K  is twice that of QPSK and MSK. This is the fundamental reason why the 
bandwidth efficiency can be doubled with Q ~ P S K  with respect to MSK, as we will 
see shortly. 

The modulated signal is 

= cos [ 2~ ( fc + - ";)) t+4h4(t)]  
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where 

b14 ( t )  = -a1 @)a4 ( t )  
# ( t )  = 0 or 7r depending on a1 ( t )  = + 1 or - 1 

and 

b 2 3 ( t )  = fa2(t)a3(t) 

( t )  = Oora  dependingon a l ( t )  = +1 or - 1 

At first glance, the two parts of the signal in (9.57) are like two MSK signals. How- 
ever, there is a key difference between them and the MSK signal. In the MSK signal 
the I- and Q-channel signals are offset by T, which makes phase continuous at sym- 
bol boundaries, whereas there is no offset in Q ~ P S K .  Thus the Q ~ P S K  cannot be 
thought of as consisting of two MSK signals, rather it can be thought of as con- 
sisting of two FSK-BPSK signals whose phase is not always continuous at symbol 
boundaries as in MSK. Noting that there are two distinct frequencies and two dis- 
tinct phases in each of the two components, the total number of distinct signals in 
Q ~ P S K  is 16. 

This signal has a nonconstant envelope. Using trigonometrical identities and 
noting that ai = Itl, (9.57) can easily written as 

where B ( t )  is the carrier phase and A( t )  is the carrier amplitude given by 

It is clear that the amplitude varies with time in general. Without any constraint on 
the data, K = a1 a2 + aaad = 0, f 2. The possible amplitude variation in a symbol 
period (Ts = 27') is shown in Figure 9.28. The amplitude can dip to zero at times. 
This is not a desired property for applications in nonlinear channels. However, when 
K = 0, the amplitude is constant. A coding scheme can be designed such that K is 
always zero, making the amplitude constant. We will discuss this shortly. 

To find the PSD of the Q ~ P S K  signal we write (9.57) for It1 5 m as 
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Figure 9.28 Possible amplitudes of Q 2 p W .  

where 

The complex envelope of the signal is 
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The autocorrelation is 

where the cross terms are all zero since the data are independent and R,, (r) = 
R,, ( T ) ,  R,, ( T )  = Ry, (7) since their signals have the same pulse shape and the data 
have the same statistics. Taking the Fourier transform of Rs (7 )  and using (A. 18) we 
obtain the PSD of Q ~ P S K  as 

where PI ( f )  and Pz ( f )  are Fourier transforms of pl (t) and p2 (t),  respectively. 

cos 27f f T 

Thus 

From this expression we can observe that the term in the squared parentheses is of 
the same form as that of MSK (see (5.14)) except that T = 2Tb. Thus the first null 
is at f = 0.75/T = 0.375/Tb, which is only one-half of that of MSK. Thus the 
bandwidth efficiency of Q ~ P S K  is twice as much as that of MSK as far as the main 
lobe is concerned. Figure 9.29 shows the PSD of Q ~ P S K  in comparison with those 
of OQPSK and MSK. Figure 9.30 is the fi-actional out-of-band power of the Q~PSK.  
The main lobe of the Q'PSK PSD is narrower than that of MSK (Figure 9.29), as a 
result, its roll-off within 2BTb = 0.8 is faster than that of MSK and QPSWOQPSK 
(Figure 9.30(b)). Beyond 2BTb = 0.8 its roll-off rate is slower than that of MSK, 
and is the same as that of QPSK/OQPSK, however at a lower level (Figure 9.30(a)). 
The reason that the side lobes in Q ~ P S K  are higher than that of MSK are as follows. 
Q'PSK uses two different pulses; one is pl (t)  having a cosinusoidal shape as in 
MSK, the other is p2(t) having a sinusoidal shape. The shape of pl (t) is smoother 
than p z ( t )  in the sense that p 2 ( t )  has jumps at t = f T. As a result, for large f ,  the 
spectral roll-off associated with p 2 ( t )  is proportional to f -2 ,  while that with pl (t)  
varies as f -4 .  
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Figure 9.29 PSD of Q 2 p s ~  in comparison with MSK. QPSWOQPSK. 

Since Q ~ P S K  signals are linear combinations of four orthogonal basis signals 
{si(t)}, the optimum demodulator is of the type given in Figure B.8 or B.9 with four 
correlators. Each signal is determined by a data four-tuple {al, a2, as, ad}. The total 
number of signals is M = Z4 = 16. The bias terms {B!} f !., can be eliminated since 
signals are equally likely and of same energy. The weighting matrix consists of the 
16 distinct data four-tuples. Each data four-tuple is a column of it. 

However, we are not really interested in detecting any one of the 16 signals. 
Instead we are interested in detecting the data bits {a,l, az, a3, a4} which are imbed- 
ded in the signal. Since each bit ai is associated with only one of the four orthogonal 
carriers, each data bit can be detected independently. Thus the demodulator can be 
simplified as shown in Figure 9.3 1. This is very much similar to the detection of I- 
and Q-channel bits in MSK. The bit error probability of this receiver is easy to de- 
termine. For any channel i in Figure 9.3 1, due to orthogonality, the correlator output 
caused by other three component signals other than aisi (t) is zero. As far as detec- 
tion of ais i  (t)  is concerned, the other three signals do not have any effect. Thus the 
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QPSWOQPSK 

--- 
' . 

\ 
a m  . MSK 

Figure 9.30 Fractional out-of-band power of Q*PSK in comparison with MSK and QPSUOQPSK. 
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Sample 

Figure 9.3 1 Q ~ P S K  demodulator. 

detection becomes just a detection of antipodal binary data ai, modulated on a car- 
rier si(t). This detection problem is identical to that of I- or Q-channel detection of 
MSK (see Section 5.6). Therefore the bit error probability of Q ~ P S K  is the same as 
that of MSK. That is 

It is interesting to note that the bit error probability is proved to be the same as in 
(9.62) if the symbols are detected using the demodulator depicted in Figure 8.8 (121. 

Thus the demodulator in Figure 9.3 1 is optimum as far as bit detection is concerned. 
The performance coincidence is due to the fact that each bit a,* is associated with only 
one of the four orthogonal carriers. We have seen similar phenomena in QPSK and 
MSK. 

While Q ~ P S K  has the same error performance as those of BPSK, QPSK, and 
MSK in an AWGN channel, for bandlimited channels, they behave differently due 
to their different spectra. Figure 9.32 is a comparison of their bit error probabilities. 
The performance evaluation assumed a sixth-order Butterw orth filter with 3 dB band- 
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Figure 9.32 Bit error probability of Q ~ P S K ,  QPSK and MSK in a bandlimited channel. Bandlimiting 
filter is six-order Butterworth with 3 dB bandwidth equal to 1.2/T. From [12]. Copyright @ 1989 IEEE. 

width W equal to 1.2/T. The Eb/N, requirement of Q ~ P S K  is approximately 1.6 
dB higher than that of MSK for Pb = lW5. The bit rate and bandwidth efficiency for 
MSK in this situation are R6(iZ.ISK) = 1/T and Rb(nrsK)/W = 0.83. For Q ~ P S K  
these values are R b ( Q ~  P S K )  = 2/T and &(Q2 p s K )  /W = 1.66 bits/s/Hz. Thus 
Q*PSK achieves twice the bandwidth efficiency of  MSK at the expense of 1.6 dB 
increase in the average bit energy. 

The synchronization scheme for Q ~ P S K  is derived as follows. If the Q ~ P S K  
signal passes through a squaring device, we get 
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where 

There are five components in (9.63) which carry carrier- or symbol-timing informa- 
tion. The expected value of each component is zero. Filtering and further nonlinear- 
ity are needed in order to recover the carrier and symbol timing. By a low-pass and 
a bandpass filtering of the squared signal, we can obtain two signals 

After squaring XI (t) and x2(t) and taking the expectation, we obtain 

2xt 
~ { x : ( t ) }  = ;1 ( 1  - cos -) 

T 

Thus on the average xf ( t  ) and xz (t) contain spectral lines at 1 /T and 4 f,. We can 
use these lines to lock phase-lock loops and cany out frequency division to recover 
the symbol-timing clock and carrier as 

x , ( t )  = cos 2n f,t 

Figure 9.33 is the block diagram of the synchronization scheme. 
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Figure 9.33 Synchronization scheme for coherent demodulation of  Q ~ P S K .  From [12]. Copyright Q 
1989 IEEE. 

The realization of modulator is shown in Figure 9.34. The basis signal set 
{si(t)) is generated by a single oscillator of f, and a bank of four bandpass filters 
and four adders. 

The constant envelope version of Q ~ P S K  can be obtained by a simple coding 
scheme. From K = ala2 + a3a4 = 0 we see that 

The encoder accepts serial data and for every three information bits {al! az, a3), 

it generates a codeword {al ,  az, as, a4}  where a4 satisfies (9.64). The rate of the 
code is 314. The constant envelope feature is achieved at the expense of bandwidth 
efficiency The information transmission rate is reduced from Rb = 2/T to 3/2T.  
But this is still 50% more than that of MSK (Rb = 1/2T for MSK). 

The modulator of the constant envelope Q ~ P S K  is the same as that of Q ~ P S K  
except that an encoder must be added to the input to perform the coding given in 
(9.64). 

Due to coding, the number of distinct signals is reduced from 16 to 8. Four of 
the eight possible codewords {Ci are as follows: 
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Figure 9.34 Realization of  Q 2 p s ~  modulator. From (121 Copyright @ 1989 IEEE. 

where + and - represent +I and -1, respectively. The remaining four codewords 
are just the negatives of these. This is a set of eight biorthogonal codewords with a 
minimum Hamming distance of two.* The code cannot be used for error correction, 
but the redundancy can be used to improve the error performance. The minimum 
Euclidean distance of the uncoded Q 2 p S ~  is due to one different bit in the four- 
tuple, say aj ,  then the squared minimum Euclidean distance is 

The minimum Euclidean distance of the coded Q ~ P S K  is due to two different bits in 

* Hamming distance between two codewords is defined as the number of bits in which they differ. 
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Figure 9.35 Constant envelop Q ~ P S K  demodulator. From [12J Copyright @) 1989 IEEE. 

the four-tuple, say ai and a j ,  then the squared minimum Euclidean distance is 

where & $ ( t ) d t  = % E~ since a four-bit codeword represents three information 

bits.  he-coded Q ~ P S K  has a minimum Euclidean distance a = 1.22 times 
greater than that of uncoded Q ~ P S K .  This provides a coding gain of 1.76 dB if the 
optimum demodulator (Figure B.8) is used. 

From an implementation point of view, a nonoptimum demodulator based on 
hard decision may be of interest. Figure 9.35 is a nonoptimum demodulator for the 
coded Q ~ P S K  which is basically the same as Figure 9.3 1 except for the decoding 
part. According to [l2], the pulses associated with s l ( t )  and s3( t )  are relatively less 
distorted in a bandlimiting channel as compared to those associated with s z ( t )  and 
s4 (t). Thus El  and & are directly determined from the correlator outputs r 1 and 73,  

while iiz is determined from E l ,  &, rz ,  and r d .  The sufficient statistic for decision 
on ii2 is 
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Figure 9.36 Bit error probabilities for constant envelope Q ~ P S K .  MSK. and TFM. From 1121. Copyright 
@ 1989 IEEE. 

The decoder decides & as +l or -1 according as V 2 0 or V < 0. The correct 
decision on Zz relies on the correct decision on Eland i&. Figure 9.36 shows the 
performance of the constant envelope Q'PSK in a bandlimited channel where a sixth- 
order Butterworth filter with 3 dB bandwidth of L2/T is used in both transmitter 
and receiver. It is seen that for Pb = I U - ~ ,  the constant envelope Q ~ P S K  with 
nonoptimum demodulation requires an &,/No = 10.3 dB while the MSK requires 
an &/No = 9.6 dB. Thus there is a 50% increase in bandwidth efficiency over MSK 
at a cost of 0.7 dB increase in the average bit energy. The error performance of the 
optimum demodulator shown in the figure does not assume band limitation. 

The synchronization system for the uncoded Q ~ P S K  is no longer applicable for 
the constant envelope Q~PSK.  Substituting (9.64) into (9.63), we get 
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1 1 
+$zlo3 - a l a 2 )  sin ( 2 ~ t ( 2 ~ ,  - -)) 2T 

There are two components in (9.65) which carry the carrier and clock information. 
But their expectations are zero. Further filtering and nonlinearity are needed to re- 
cover the carrier and clock information. By bandpass filtering we can get 

1 1 
XI ( t )  = 2(ala,3 + a l n z )  sin ( 2 ~ t ( 2 ~ ,  + -)) 2T 

I 
~2 ( t )  = (a  1 a3 - al a2) sin 2x t (2  f, - - 

2T 

It can be shown that x:(t) and x;(t), on the average, contain spectral lines at 4 f, f 
We can use phase-locked loops to lock on theses lines and carry out frequency T.' 

d~vision to get 

Then a multiplication of these two followed by bandpass filtering and frequency 
division gives the desired carrier and clock signal 

x,(t) = cos 2x f,t 

The block diagram of this synchronization scheme is shown in Figure 9.37. 
To firther improve the bandwidth efficiency of Q ~ P S K ,  pulse shapes other than 

the ones in (9.55) and (9.56) can be used 1121. A few of transmitter baseband filter 
pairs that can achieve zero intersymbol interference and zero cross-correlation are 
given in Figure 9.38. These filters have a two-sided bandwidth of 1/T, thus can 
achieve a bandwidth efficiency of 2 bits/sMz which is better than the 1.66 bitsMHz 
as previously demonstrated for (9.55) and (9.56). The filter pair in Figure 3.38(a) is 
a Hilbert transform pair. The rectangular frequency responses of this pair of filters 
are difficult to realize. Besides, a Hilbert transform pair has an additional problem 
because of the finite dc content. The pair in Figure 3.38(b) has no problem of dc 
content but it still has the problem of sharp cutoff at the band edge of P2( f ) .  From 
the realization point of view, the pair in Figure 3.38(c) is specially convenient; one 
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Figure 9.37 Synchronization scheme for coherent demodulation of constant envelope Q ~ P S K .  From 
[121 Copyright @ 1989 IEEE. 

r 

O2 

of the two filters is a cosine shape PI (f) and the other Pz(t) is just a bandlimited 
differentiator. Note that P2 ( f ) still has sharp cutoff edges at f = 51/27'. However, 
if a Buttenvorth filter is incorporated with the ideal differentiator, the realization 
problem is greatly reduced. The bit error performance has been studied for PI ( f )  = 

cos 7r f T and P2( f )  = j f B( f) where B( f )  is a Buttenvorth low-pass filter of 
second order with 3 dB bandwidth W = 0.5Rb. The corresponding transfer function 
is given by 

where s is the complex frequency (normalized with respect to 3 dB bandwidth). This 
transfer function is realizable. With this pair of filters, not only the bandwidth ef i -  
ciency is improved to 2 bits/s/Hz, but also the energy efficiency is improved from 
11.2 dB to 10.8 dB for a bit error probability of loe5. 

A generalized Q ~ P S K  signaling format has been proposed for differential encod- 
ing and differential detection [13]. It is suitable for mobile and fixed radio links with 
multipath and fading problems. Differential detection of Q*PSK requires approxi- 
mately 3 dB extra Eb/No. However, the 3 dB loss can be fully or partially recovered 
if maximum likelihood decoding is used based on multiple (more than two) symbol 
observations. 

- PLL 
+ 

-b 4fc+lfl r4 
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Figure 9.38 Transmitter filter pairs for Q ~ P S K  transmission with zero intersymbol interference and 
cross-correlation. From 1123. Copyright @ 1989 IEEE. 
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9.7 SUMMARY 

In this chapter we have covered the main research results on nonconstantenvelope 
bandwidth-efficient modulation schemes during the last twenty years. W have stud- 
ied eight different schemes, namely, QBL, QORC, SQORC, QOSRC, IJF-OQPSK, 
TSI-OQPSK, SQAM, and Q~PSK. The fmt seven are all similar in that each of them 
consists of two quadrature carriers weighted by pulses of a length of or 4Tb. The 
last one consists of four carriers weighted by sinusoidal or cosinusoidal pulses of a 
length of, again, 4Tb. 

By relaxing the constant envelope constraint, these proposed schemes are able 
to shrink the spectrum of the signal while maintaining a bit error probability close 
to MSK. The envelope fluctuations are not significant for staggered schemes. But 
the nonstaggered scheme QORC exhibits a big envelope variation. A11 of the eight 
schemes studied have spectral main lobes comparable to or smaller than that of QPSK 
and a faster spectral roll-off of the sidelobes. Therefore they provide low spectral 
spreading caused by nonlinear amplification. 

Some schemes, namely the IJF-OQPSK, TSI-OQPSK, and SQAM have been 
examined against the ACI environment and found to have less degradation in error 
probability than QPSIUOQPSK. Other schemes have not been examined against the 
ACI environment and the study can be done in the future as research topics. 

For the 2Ts schemes we have developed an optimum demodulator which uses 
two correlators in each of I- and Q-channel. For all the 2T, schemes, the bit er- 
ror probability of the optimum demodulator is slightly higher than that of MSK. 
However, all these schemes can be demodulated by a conventional QPSWOQPSK 
demodulator with small loss in error performance. For Q~PSK, noncoherent demod- 
ulation is impossible and a coherent demodulator is developed. The Q ~ P S K  can also 
be made constant-envelope by a simple coding scheme. But the improvement of 
bandwidth efficiency over MSK is reduced from 100% to 50%. 
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Chapter 10 

Performance of Modulations in Fading 
Channels 

In wireless radio channels, a signal &om the transmitter may arrive at the receiver's 
antenna through several different paths. The transmitted electromagnetic wave may 
be reflected, diffracted, and scattered by surrounding buildings and the terrain in 
the case of mobile radio communications, or by troposphere and ionosphere in the 
case of long-distance radio communications. As a result, the signal picked up by 
the receiver's antenna is a composite signal consisting of these multipath signals. 
Sometimes a line-of-sight (LOS) signal may exist. The multipath signals arrive at 
the receiver at slightly different delays and have different amplitudes. The differ- 
ent delays translate to different phases. This results in a composite signal which 
can vary widely and rapidly in amplitude and phase. This phenomena is called fad- 
ing. Mriations in the property of the propagation medium, such as the occurrence 
of rain or snow, also can cause fading. However, this type of fading is long-term 
fading, which we will not consider here. Multipath also causes intersyrnbol inter- 
ference for digital signals. For mobile radio channels (ground and satellite), there 
is also the Doppler frequency shift. Doppler shift causes carrier frequency drift and 
signal bandwidth spread. All these adversaries cause degradation in performance 
of modulation schemes in comparison with that in AWGN channels. In this chap- 
ter we study performances of modulation schemes in fading channels. To do that 
we need to briefly study the characteristics of fading channels (Section 10.1). After 
that we first study flat-fading-channel performances of common binary and quater- 
nary schemes, namely, BFSK, BPSK, DBPSK, QPSK, OQPSK, and MSK including 
GMSK in Section 10.2. In Section 10.3, their performances in frequency-selective 
channels are studied. The fading-channel performance of a/4-DQPSK, which is es- 
pecially important since it is the standard in the United States and Japanese cellular 
telephone systems, is covered in great detail in Section 10.4. Then we move on to 
cover 1REC-MHPM or multi-h CPFSK in Section 10.5 and QAM in Section 10.6. 
Section 10.7 provides a brief discussion of remedial measures against fading. An in- 
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depth discussion of remedial measures is beyond the scope of this book. The reader 
is provided with relevant references. Section 10.8 is a brief summary of this chapter. 

10.1 FADING CHANNEL CHARACTERISTICS 

1 0 . 1  Channel Characteristics 

A fading-multipath channel is characterized by several parameters: 

Delay spread In a multipath channel, the signal power at the receiver spreads 
over a certain range of time. The delay of the ith signal component in excess of 
the delay of the first arriving component is called excess delay, denoted as T i .  

Since T is a random variable, the average T;i is the mean excess delay, the square 
root of the variance O, is called rms excess delay, and excess delay spread (X 
dB) is defined as the longest time delay during which multipath energy falls 
to X dB below the maximum. In other words, the maximum excess delay is 
defined as 7-y - 70, where TO is the delay of the first arriving signal and T X  

is the maximum delay at which a multipath component is within X dB of the 
strongest signal which is not necessarily the first arriving signal. Figure 10.1 is 
an example of an indoor power delay profile, showing the definitions of delay 
spread parameters. The typical 0, values are on the order of microseconds 
(p) in outdoor mobile radio channels and on the order of nanoseconds (ns) in 
indoor channels. 
Coherence bandwidth. The coherence bandwidth B, is defined as the range 
of frequencies over which the channel can be considered "flat," meaning the 
channel passes all spectral components with approximately equal gain and 
linear phase. Frequency components in this bandwidth have a strong correlation 
in amplitude, hence the name "coherence bandwidth." On the other hand, 
two sinusoidal signals with frequency separation greater than B, are affected 
quite differently. To derive a value of B,, we define an envelope correlation 
coefficient between two signals as 

where E{ . )  denote the ensemble average and a1 and a2 represent the 
amplitudes of signals at frequencies fi and f i ,  respectively, and at times t l  and 
t 2 ,  respectively, where ( f2 - fl 1 = A f and Itz - t l  1 = At. Next we employ 
the approximation that in the mobile radio environment the amplitude of each 
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RMS Delay Spread = 46.40 ns 

Maximum Excess Delay < 10 dB = 84 ns 

Threshold Level = -20 dB 7 
Mean Excess Delay = 45.05 ns 
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Figure 10.1 Delay spread parameters. From [ l  J. Copyright @ 1996 Prentice Hall. 

received signal is unity and that the probability of receiving a signal with delay 
T is given by 

Then it can be shown [2,3] that the envelope correlation coefficient for two 
signals separated by A f Hz and At seconds is equal to 

where J o ( - )  is the zeroth order Bessel function of the first kind and f, = v / c  is 
the maximum Doppler shift for a velocity of v, with c representing the velocity 
of light. If At = 0, the envelope correlation coefficient becomes the frequency 
correlation coefficient 
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Now fiom (10.3) we can relate coherence bandwidth to the rms delay spread 
inversely as follows 

Usually the coherence 
which p(B,, 0) = 0.5. 

bandwidth is defined as the frequency separation at 
Thus from (10.4) we have 

However, we can determine a coherence bandwidth for any value of frequency 
correlation p(B,, 0). For example if p(Bc, 0) = 0.9, we have 

Note that the relations given in (10.4) to (10.6) are based on (10.1) which is an 
approximation. Thus the above relations between Bc and (T, are just coarse 
estimates. 
Doppler speud. Doppler spread BD is a measure of the spectral broadening 
caused by the relative movement of the mobile and base station, or by 
movement of objects in the channel. It is obvious that the Doppler spread is 
equal to the maximum Doppler frequency (i.e., BD = f,). The total bandwidth 
of the received signal is determined by the bandwidth of the baseband signal 
and the Doppler spread. If the baseband bandwidth is much greater than BD, 
the effects of Doppler spread is negligible at the receiver. 
Coherence rime. Similar to the definition of the coherence bandwidth, we can 
define a coherence time which is an estimate of at what transmitted signal 
duration distortion becomes noticeable. The coherence time Tc is defined as the 
time difference between two signals with the same frequency, whose envelope 
correlation is 0.5. That is 

p ( 0 ,  Tc) = 0-5 

which implies from (10.2) 

This makes 
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Some authors simply use a more coarse estimate, that is, 

This actually corresponds to p(0,  T,) -- Ji(2x) = 0.048. Equation (10.8) is a 
much less restrictive definition than (10.7). According to [ I  I, a popular rule of 
thumb for modem digital communications is to define the coherence time as 
the geometric mean of (lO.7) and (10.8). That is 

10.1.2 Channel Classification 

We use the above parameters to classify fading channels. 

a Flat fading. Flat fading is also called Frequency nonselective fading. If a 
wireless channel has a constant gain and linear phase response over a bandwidth 
which is greater than the signal bandwidth, then the signal will undergo flat 
or frequency nonselective fading. This type of fading is historically the most 
common fading model used in the literature. In flat fading, the multipath 
structure is such that the spectral characteristics of the transmitted signal is 
preserved at the receiver. However, the strength of the signal changes with time, 
due to the variation of the gain of the channel caused by multipath. In terms of 
the parameters we just defined, the flat fading channel is characterized by 

or equivalently 

where B, is the signal bandwidth and Ts is the symbol period of the signal. That 
is, a fading channel is flat or frequency nonselective if the channel coherence 
bandwidth is much greater than the signal bandwidth, or equivalentl' the 
rms delay spread is much smaller than the signal symbol period. Since the 
frequency response is flat, the impulse response of a flat fading channel can be 
modeled as a delta function without delay The strength of the delta hnction 
changes with time. 
Frequency selectivefading. If the channel has a constant gain and a linear phase 
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response over a bandwidth which is smaller than the signal bandwidth, then the 
signal undergoes frequency selective fading. This is caused by such a rnultipath 
structure that the received signal contains multiple versions of the transmitted 
signal with different attenuations and time delays. Due to the time dispersion 
of the transmitted signal, the received signal has intersymbol interference. 
Thus the received signal is distorted. Viewed in the fiequency domain, some 
frequency components have greater gains than others. Frequency selective 
fading channels are much more difficult to model than flat fading channels. 
Each multipath signal must be modeled and the channel is considered as a linear 
filter. Models are usually developed based on w ideband measurement. In terms 
of the parameters, the frequency selective fading channel is characterized by 

or equivalently 

That is, a fading channel is frequency selective if the channel coherence 
bandwidth is smaller than rhe signal bandwidth, or equivalenth the rms deZay 
spmau' is greater than the signal symbol period This rule may be too stringent 
for identifying a channel as frequency selective. A common rule of thumb is 
that a chamel is frequency selective if a, > 0. ITs, although this depends on 
the specific type of modulation used [I]. 
Fastfading. If the channel impulse response changes rapidly within a signal 
symbol duration, the channel is classified as a fast fading channel, otherwise it 
is classified as a slow fading channel. The fast change of the channel impulse 
response is caused by the motion, or equivalently, the Doppler spreading. 
Quantitatively. when the channel coherence time is smaller than the symbol 
duration, or equivalentlj the Doppler spreading is grvater than the signal 
bandwidth, a signal undepoes fast fading. That is, if 

or equivalently 

the channel is a fast fading channel. 
Slowfading. In a slow fading channel, the channel impulse response changes 
at a much slower rate than the symbol rate. The channel coherence time is 
much greater than the symbol duration, or equivalently. the Doppler spreading 
is much smaller than the signal bandwidth. That is, a signal undergoes slow 
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I Based on rnultipath time delay spread I 

Bc < BS 

Based on Doppler frequency spread 

Fast Fading 

BD > Bs 
Tc < Ts 

Table 10.1 Fading channel classification. 

fading if 

or equivalently 

In a slow fading channel, the channel impulse response can be considered static 
within one or several symbol durations. 

Table 10.1 is a summary of the channel classifications. 
A combination of the low data rate (i.e., T, is large) and the high speed of the 

mobile unit corresponds to fast fading since the mobile experiences rapid electro- 
magnetic field changes in a very short time (i.e., Tc is small). In the contrary, a 
combination of high data rate and low speed corresponds to slow fading. Of course, 
when the mobile unit is not moving, the channel is a slow fading channel regardless 
of the data rate. 

It should be pointed out that when a channel is classified as a fast or slow fading 
channel, it does not classify whether the channel is flat fading or frequency selective 
fading. Aflar fading, fastfading channel is a channel whose impulse response is a 
delta function with a strength that varies faster than the symbol rate. In afrequency 
selective, fastfading channel, the amplitude, phase and time delay of any of the 
multipath components vary faster than the symbol rate. The other two combinations 
are the flat, slow fading channel andfiquency selective, slow fading channel. As a 
matter of fact, these two are the common models in practice since fast fading only 
occurs for very low data rates at which the mobile can move a long distance and 
experiences a wide range of signal strength change in a symbol period. We will 
focus on the flat, slow fading channel and jkquency selective, slow fading channel 
in the rest of this chapter. 
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Figure 10.2 Rayleigh distribution density. 

10.1.3 Fading Envelope Distributions 

In a multipath channel, the received signal consists of a large number of plane waves, 
whose complex low-pass signal 

F(t) = (t) + jrQ (t) 

can be modeled as a Gaussian random process. If none of the multipath components 
is dominant, 7-1 ( t )  and rQ ( t )  are Gaussian processes with zero mean and a variance 
of 02. The envelope z ( t )  = liT(t)l obeys the Rayleigh distribution. The probability 
density function (PDF) of the Rayleigh envelope is given by 

and p ( z )  = 0 for 2 < 0. Rayleigh fading agrees very well with empirical observa- 
tions for macrocellular applications. The plot of p ( t  ) is given in Figure 10.2. The 
maximum p ( z )  occurs at 2 = 0. 

The probability that the envelope does not exceed a specific value Z is given by 
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the cumulative distribution function (CDF) 

The mean value of the Rayleigh envelope is 

The average power of the Rayleigh envelope is 

The ac power of the envelope is the variance 

The Rayleigh density can be written in terms of the average power R as 

If a dominant component, such as the LOS or specular component, is present in 
the multipath channel, rr ( t )  and rQ( t )  have nonzero mean and the envelope has a 
Rician distribution 

and p ( z )  = 0 for z < 0, where A is the peak amplitude of the dominant signal and 
lo() is the zeroth modified Bessel function of the first kind. Rician fading is very 
often observed in microcellular applications. A parameter K is often defined for a 
Rician channel 

A2 K = -  
2a2 

(10.13) 

which is the ratio of the power of the specular signal over the power of the scattered 
components. In terms of dB, we have 

A2 
K(dB)  = 10 log - 

202 
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Figure 10.3 Rician distribution density curves for a fixed average power $2 = 2 so that when K = 0, 

the Rayleigh curve is exactly the same as in Figure 10.2. 

The average power 

The Rician density can be written in terms of K and R: 

(1 0.14) 
Figure 10.3 shows the Rician distribution density for some values of K. When K = 
0, the Rician distribution becomes the Rayleigh distribution. When K = oo the 
channel does not exhibit any fading. The curves are for a fixed average power fl = 2, 
so that when K = 0, R = 2q2  and p ( z )  is identical to that given in (1  0.1 1). 

Another model of envelope distribution is the Nakagami distribution which was 
selected to fit empirical data for long-distance HF channels. The Nakagami distrib- 
ution is given by [4] 
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where R = I3{rZ). When rn = 1, the Nakagami distribution becomes the Rayleigh 
distribution. It is claimed to provide a closer match to some experimental data than 
Rayleigh or Rician distributions. However, the claims were based on fitting enve- 
lope statistics around the mean or median, rather than the near-zero region which is 
fundamental to system performance over fading channels [s]. Therefore, the results 
based on a Nakagami distribution appear questionable for practical use, and they will 
not be discussed further in this chapter. 

10.2 DIGITAL MODULATION IN SLOW, FLAT FADING CHANNELS 

In a flat fading channel, the signal undergoes a multiplicative variation. In general 
this multiplicative factor is complex, that is, the signal amplitude as well as phase 
are affected. If we further assume that the fading is slow, then the amplitude attenu- 
ation and phase shift of the received signal can be considered constant over at least 
a symbol duration. Therefore, if the transmitted equivalent low-pass complex signal 
is Z ( t ) ,  the received equivalent low-pass complex signal can be written as 

where r is the amplitude of the signal (assuming Z( t )  has a unit amplitude), qi is the 
phase shift of the signal caused by the channel, and G ( t )  is the equivalent low-pass 
complex additive Gaussian noise. 

The received signal may be coherently detected or noncoherently detected, de- 
pending on whether it is possible to accurately estimate the phase shift 4. In either 
case, the average error probability can be evaluated by averaging the error probabil- 
ity for a fixed amplitude z over the entire range of z. That is 

where 

is the signal-to-noise ratio with fading for a particular value of z, P, ( y b )  is the symbol 
or bit error probability conditioned on a fixed y,, and p(y,) is the probability density 
function of y,, and P, is the average symbol or bit error probability. 

10.2.1 Rayleigh Fading Channel 

For Rayleigh fading channel, z has a Rayleigh distribution, thus r2 and y, have a 
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chi-square distribution with two degree of freedom. That is 

where 

is the average value of the signal-to-noise ratio.' 
Substituting the error probability expression of a specific modulation in the 

AWGN channel and ( 1  0.18) into (1 0.17), we can obtain the error probability expres- 
sion of the modulation in a slow, flat, Rayleigh fading channel. For many important 
modulation schemes, the P. expression in the AWGN channel is in the form of Q 
function or exponential hnction. Fortunately, for these two fbnction forms, the P, 
expressions in the fading channel are in closed forms. For other schemes numerical 
calculation is needed to obtain the error probabilities in the fading channel. 

For many schemes, the symbol or bit error rate in the AWGN channel can be 
expressed in one of the two general forms as 

6Eb P, = c exp (- Rb) 
where C and 6 are constants (see Table 4.7 for many examples). In the fading chan- 
nel, the signal-to-noise ratio &,/No becomes yb = r2 Eb/N,. Correspondingly the 
conditional error probabilities are 

Substituting (10.19) or (10.20) and (10.1 8) into (10.17), we can obtain the corre- 
sponding symbol or bit error probabilities. 

From Section 10.1.3 we know that z2 ( t )  = ry ( t )  + r$ ( t )  where rr ( t )  and +Q ( t )  are Gaussian 
random processes. It is well known that the sum of  n Gaussian random variables obeys a distribution 
called chi-square (X2) distribution with n degrees of freedom. See [6, p, 1091 
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For the exponential function P, (y,), (1 0.17) can be evaluated easily. The result 
is 

For the Q function Pe (T,), (10.17) is evaluated using the following two formu- 
las. The first is from the integral table [7] 

and the second is the well-known relation between the error function and the Q func- 
tion 

1 - erf (x) = ZQ(&) ( 1  0.23) 

which is used to convert the Q function into the error function in order to use (1 0.22). 
Substituting (1  0.19) and ( 1  0.18) into (1 O.l7), using ( 1  O Z ) ,  and making a variable 
change y, = x2, we have 

Recognizing d m  = /3 and l/r = p in (10.22), the above is equal to 

Using general expressions (10.21) and (10.24), error rates of many modulation 
schemes in the slow, flat, Rayleigh channel can be easily found out. 

For coherent BPSK, QPSK, OQPSK, and MSK, their Pb expressions are the same 
in the AWGN channel. That is, Pa = Q ( d m ) .  This means C = 1 and 6 = 2 
in (10.24). The result is 

[l\iLl 
2 

(coherent BPSK, QPSK, OQPSK, and MSK) (10.25) 1+r ' 

For optimum dflerential BPSK (Figure 4.7 and (4.1 O)), Pb = $ exp(- 2 ) in 
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the AWGN channel, which makes C = 112 and 6 = 1. From (10.2 1) we have 

Pb = 
1 

2(1+ r) ' (optimum DBPSK) 

For coherent binary FSK, Pb = Q ( JE~IN,) in the AWGN channel. This 

implies C = 1 and 6 = 1. From (10.24) we obtain 

(coherent BFSK) 

For noncohe~nt orthogonal BFSK, Pb = $ exp(- s) in the AWGN channel. 
This leads to C = 1/2 and 6 = 1/2, thus 

I 
Pb = - 

2+r7  
(noncoherent orthogonal BFSK) (1 0.28) 

For large signal-to-noise ratios, the above error probability expressions can be 
approximated as 

Pb = - (coherent BPSK, QPSWOQPSK, MSK) 
41-7 ' 

1 
Pb = - 

2r7 
(coherent BFSK and optimum DBPSK) 

I 
Pb = - (noncoherent orthogonal BFSK) r ' 

For GMSK, the AWGN channel bit error rate is Pb = Q ( J-). Thus 
C =  l , b =  &and 

1 
Pb = 7j (coherent GMSK) (1 0.29) 

where 

E = {  
0.68, for BTs = 0.25 
0.85, for BTs = oo 

For r/4-DQPSK, the AWGN channel bit error rate is 
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Average signal-to-noise ratio r (dB) 

Figure 10.4 Bit error rates of several common modulation schemes in a slow. flat, Rayleigh fading 
channel. 

(see Table 4.7). Thus C = 1 and b = 1.112. From (10.24) we have 

Pb = 2 1 
(optimum 7r/4 - DQPSK) (10.30) 

The list can go on for many other schemes whose error rate expressions have the 
forms in (1  0.19) or (1 0.20). 

Figures 10.4 and 10.5 illustrate the error performance of the above schemes in 
the slow, flat, Rayleigh channel. It is seen that Rayleigh fading causes a significant 
loss in signal-to-noise ratio for the same bit error probability, in comparison with the 
AWGN channel. For example at Pb = lom3, which is considered to be adequate for 
voice communications, the increase in the average signal-to-noise ratio is about 15 to 
20 dB, depending on the particular modulation scheme used. The losses can be sig- 
nificantly reduced by using diversity techniques and error-control coding techniques. 

10.2.2 Rician Fading Channel 

For the Rician fading channel the amplitude r of the received signal r ( t )  in (10.16) 
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in AWGN channel 
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Average signal-to-noise ratio I '  (dB) 

Figure 10.5 Bit error rates of GMSK and x/4-DQPSK in a slow, flat, Rayleigh fading channel. 

has a density function given in (10.12). Closed-form expressions for the error proba- 
bilities of DPSK and orthogonal FSK in Rician fading channels are found in 181. First 
the Rician density in (10.12) is transformed to an expression where the random vari- 
able is the instantaneous signal-to-noise ratio yb = zZEb/No instead of the signal 
amplitude r. 

where K is the ratio of the power ofthe specular signal over the power of the scattered 
components defined in ( 10.13). Using (1 0.3 I ) and appropriate P, (7,) in (I 0.17) and 
again using the appropriate entry in the integral table [7], we obtain 

K + 1  
Pb = 2(K + 1 +r)  ) , (optimum DBPSK) (10.32) 

and 

Pb = 
K + l  

2(K + 1) +I' 
) , (noncoherent BFSK) (10.33) 

( - 2 ( K  + 1) + 1. 
Figures 10.6 and 10.7 show the plots from (10.32) and (10.33). 
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For other modulation schemes, we can substitute (10.3 1) and the appropriate 
AWGN error rate expressions into (1 0.17) and numerically evaluate their error per- 
formance in the slow, flat, Rician channel. Figures 10.8 to 10.12 are the numerical 
results. Figure 10.8 is for BPSK, QPSWOQPSK, and MSK. Figure 10.9 is for BFSK. 
Figure 10.10 is for GMSK (BT = oo) and Figure 10.11 is for GMSK (BT = 0.25). 
Figure 10.12 is for ~14-DQPSK. It is seen from Figures 10.8 to 10.12 that the curves 
are more compact and more evenly spaced than those in Figures 10.6 and 10.7. 

10.3 DIGITAL MODULATION IN FREQUENCY SELECTIVE 
CHANNELS 

In a frequency selective fading channel, the received signal contains multiple de- 
layed versions of the transmitted signal. The rnultipath signals cause intersym bol 
interference (ISI) which results in an irreducible BER floor. The BER falls initially 
with the increase of the signal-to-noise ratio (Eb/N,) ,  and stops falling when the 
signal-to-noise ratio is sufficiently high at which the errors are almost exclusively 
caused by the ISI. From the cause of the error floor, it is clear that the BER floor is 
directly related to the delays of the multipath components. 

Simulation is the main tool of studying BER behavior in frequency selective 
fading channels. Chuang 191 simulated the error performance of unfiltered BPSK, 
QPSK, OQPSK, and MSK schemes in frequency selective fading channels. Chuang 
also simulated the error performance of GMSK with various BTb of the premodula- 
tion filter and QPSK with a raised-cosine Nyquist pulse (RC-QPSK)* using various 
roll-off factors a. 

Chuang found through simulation that coherent detection performs better than 
differential detection in frequency selective fading channels. So his study was con- 
centrated on coherent detection. 

Figure 10.13 presents the irreducible BER performance for unfiltered BPSK, 
QPSK, OQPSK, and MSK with coherent detection for a channel with a Gaussian- 
shaped power delay profile. The parameter d is the rrns delay spread normalized 

The pulse shape of RC-QPSK is obtained by filtering the baseband NRZ pulse with a raised-cosine 
frequency response 

where W is the absolute bandwidth of the filter and Wo = 1/27', i s  the Nyquist bandwidth. The roll-off 
factor is defined as CY = (I.+' - IVo)/Wo. The larger the a. the larger the bandwidth W .  
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Figure 10.6 Bit error rate of  optimum DBPSK in Rician fading channel. 
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Figure 10.7 Bit error rate of noncoherent orthogonal BFSK in Rician fading channel. 
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Figure 10.8 Bit error rate of BPSK, QPSWOQPSK, MSK in R i c h  fading channel. 
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Figure 10.9 BER of BFSK in Rician fading channel. 
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Figure 10.10 BER of GMSK (BT = oo) in stow, flat, Rician fading channel. 
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Figure 10.11 BER of GMSK (BT = 0.25) in slow, flat, Rician fading channel. 
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Figure 10.12 BER of .rr/4-DQPSK in slow, flat, Rician fading channel. 

by the symbol period (i.e., d = oT/Ts). This figure indicates the performance is 
ranked in the following order: I )  BPSK, 2) QPSK, 3) OQPSK, 4) MSK. The perfor- 
mance of BPSK is the best because cross-rail interference does not exist. Cross-rail 
interference exists in quadrature modulations (QPSK, OQPSK, and MSK), where 
the modulator has two rails (I- and Q- channels). The two bit sequences will have 
no interference to each other if ideal channel condition is maintained and coherent 
demodulation is used. However, in multipath fading channels, these two sequences 
cannot be completely separated at the demodulator due to the multipath fading con- 
dition. Both OQPSK and MSK have a Ts /2 timing offset between two bit sequences, 
hence the cross-rail IS1 is more severe. Therefore their performances are inferior to 
that of QPSK. 

The normalization factor for parameter d in Figure 10.13 is the symbol period 
Ts, during which two bits are transmitted in QPSK, OQPSK, and MSK, whereas 
only one bit is transmitted in BPSK. In other words, the comparison of error floor 
in Figure 10.13 is based on different bit rate or information throughput. A fairer 
comparison should be based on d' = OJG, that is, on the same bit rate. Figure 
10.14 is the same set of curves as in Figure 10.13 plotted against d'. It is clear from 
the figure that four-level modulations are more resistant to delay spread than BPSK 
for the same information throughput. The intuitive reason for this is that for the same 
bit rate the four-level modulations have twice the length of the symbol period of that 
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Figure 1 0.13 The irreducible BER performance for different modulations with coherent detection for a 
channel with a Gaussian-shaped power delay profile. The parameter d is the rms delay spread normalized 
by the symbol period. From (9) Copyright @ 1987 IEEE. 
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Figure 10.14 The same set of curves as in Figure 10.13, plotted against rms delay spread normalized by 
the bit period instead of symbol period. From 19). Copyright @ 1987 IEEE. 
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d'= rms delay s p a d  
bit period 

The irreducible BER performance for QPSK and 8-PSK. The parameter d' is the rms delay 

spread normalized by the bit period. From [9). Copyright @ 1987 IEEE. 
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Figure 10.16 The irreducible BER performance for RC-QPSK with coherent detection for a channel 
with a measured power delay profile in Figure 10.18. Results for the unfiltered QPSK are also shown for 
comparison. The pararneter a is the roll-off factor in raised-cosine filter. The parameter d i s  the rms delay 
spread normalized by the symbol period. From [9) Copyright @ 1987 IEEE. 
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Figure 10.17 The irreducible BER performance for GMSK with coherent detection for a channel with a 
measured power delay profile as shown in Figure 10.18. Results for the unfiltered MSK are also shown for 
comparison. The parameter BTb is the 3 dB bandwidth o f  the prernodulation Gaussian filter normalized 
by bit rate. The parameter d is the rms delay spread normalized by the symbol period. From (91 Copyright 
@ 1987 IEEE. 
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Figure 10.18 A power delay profile obtained from measurements done in an o f i c e  building; the ms 
delay spread is approximately 250 ns. From [9J Copyright @ 1987 IEEE. 

of BPSK; therefore for the same d', the relative delay spread d is only one-half of 
that of BPSK for four-level modulations. It is d, not d' that influences the detection 
of a bit. 

Higher level modulations were also simulated. Figure 10.15 indicates that the 
performance of 8-PSK is not superior to that of QPSK as SNR approaches infinity, 
even though it has 3 bits per symbol. This is not surprising since BER of &PSK is 
much higher than that of QPSK in an AWGN channel (see Figure 4.13 where sym- 
bol error rate is shown, however it can be easily converted to BER using (4.25)). 
The advantage of smaller d' is offset by this disadvantage. This is why four-level 
modulations are chosen for all third-generation wireless standards. 

It is also interesting to note that all curves in Figures 1 0.1 3, 1 0.14 and 1 0.1 5 are 
nearly parallel to a straight line of slope two. That is, an order of magnitude increase 
in delay spread results in about two orders of magnitude increase in the irreducible 
BER within the range of d simulated. These simulation results are consistent with 
an earlier theoretical finding given in [lo]. 

Figure 10.16 shows the irreducible BER of RC-QPSK as a function of a ,  the 
roll-off factor in raised-cosine filter, for different values of rms delay spread. The 
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delay spread profile is a measured one shown in Figure 10.18. Results for the un- 
filtered QPSK are also shown for comparison. As a increases, the irreducible BER 
decreases monotonically due to decrease in ISI. However, the spectral occupancy 
also increases. It is seen from the figure that the RC-QPSK with a 2 0.75 has lower 
irreducible BER than the unfiltered NRZ-QPSK. 

Figure 10.17 shows the irreducible BER of GMSK as a function of BTb, the 3 
dB bandwidth of the premodulation Gaussian filter normalized by bit rate. The delay 
spread profile of the channel is again the one shown in Figure 10.18. Results for the 
unfiltered MSK are also shown for comparison. The GMSK is demodulated by an 
MSK receiver which is not matched to the GMSK signal. It is seen from the figure 
that the best BER performance is obtained by choosing BTb = 0.25; however, the 
performance is not very sensitive to BTb until BTb is too small (< 0.25). 

10.4 x/4-DQPSK IN FADING CHANNELS 

Since */CDQPSK is the standard of the third-generation mobile telephone systems 
in the United States and Japan, its performance in the mobile fading channel is of 
great interest. Its performance in a slow, flat, Rayleigh or Rician fading channel 
has been discussed in Section 10.2. The research groups led by Dr. Feher and Dr. 
Rappaport investigated its BER performance for other important channel conditions 
and results were published in references [I 1-1 31. 

In [UJ, the channel model is the flat-fading indoor radio channel model based 
on measurements. The BER results of the simulation are based on the channel char- 
acteristics of 50 simulated measurement locations and narrow-band flat fading char- 
acteristics seen by a mobile at each location. Twenty-five of those 50 simulated 
channels are in LOS topography and 25 of them are in OBS (obstructed) topogra- 
phy. Figure 10.19 shows the results for a/4-DQPSK as well as BPSK and FSK. 
BPSK has a 3 dB advantage over */CDQPSK at low Eb/No values, and a 2.8 dB 
advantage at higher signal levels. But this is offset by the 3 dB advantage on the spec- 
tral efficiency offered by x/4-DQPSK. This suggests that among the three schemes 
compared, n/4-DQPSK is the most appropriate choice for indoor flat fading radio 
channels. 

The error performance of x/4-DQPSK is analyzed for a two-ray Rayleigh fading 
mobile channel with a co-channel interference (CCI) in (111. This is considered to be 
the model for the cellular mobile communication. The channel is modeled by the 
following expression. 
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Figure 10.19 Comparison of simulated BER performance for various modulation schemes in the 50 
combined simulated channels. From [ I  21 Copyright @ 199 1 IEEE. 

where F(t) is the equivalent low-pass received signal. ZT(t) is the transmitted low- 
pass signal and &(t - r )  is the second ray with a delay T .  &(t)  is the low-pass 
co-channel interference. %(t)  is the low-pass AWGN. Ri ( t ) ,  i = 1 ,2 ,3 ,  are Rayleigh 
envelopes and #i ( t )  , i = 1,2 ,3 ,  are random phases with uniform distribution. The 
combination of sT( t )  and sr(t  - T )  accounts for the frequency-selective fading. If 
Rz(t)  = 0, the channel is not frequency-selective fading, it is flat fading. If R3 (t) = 
0, there is no CCI. The channel could be slow fading or fast fading, depending on the 
speed of the mobile and the date rate. In terms of the received signal, this is reflected 
by the Doppler spread, or equivalently, the correlation of the signal samples. 

In the analysis, to avoid ISI, a raised-cosine filter with roll-off factor a is used in 
the transmitter and a brick-wall filter with bandwidth (baseband) equal to (1 + a) fiv 
+ fD,,,, is used in the receiver, where fN is the Nyquist bandwidth ( fs = 1/2Ts in 
baseband, see Section 1.4.2), and f D,,, is maximum Doppler spread. The receiver 
passes the received signal without distortion. The system is ISI-free. This causes 
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0.57 dB (= lOlog(1 + a)  (1 - 0 . 2 5 ~ ) ) ~  Eb/No degradation for a = 0.2. However, 
when CCI is the dominant interference as in cellular systems, the performance is the 
same as the matched filtering system. 

The analytical BER expressions for DBPSK, DQPSK, and n/4-DQPSK are de- 
rived in [ H I .  However, these expressions are quite complicated. We would rather 
not list them here, instead, some representative numerical results for several sets of 
important parameters are presented. First we define the parameters. 

1.  C / N  denotes the average carrier-to-noise power ratio with noise power 
measured in receiver bandwidth (2(1+ a) fN),  if fD,,,, << fly. Recall that we 
usually draw BER curves against Eb/No instead of GIN. The relation between 
them is simple. We know that C = Eb f b  and N = NOWn, where fb is the data 
bit rate and bli, is the equivalent noise bandwidth, then 

For nI4-DQPSK using the Nyquist filter, at the carrier band UL = 2 fLV = f, = 
f b / 2 .  Thus C/N = 2Eb/No. That is, C / N  is gmzter than Eb/N0 by 3 dB in 
a z/4-DQPSK system with matched Nyquist filters in the transmitter and the 
receiver. Since Eb/N,  and C / N  are proportional to each other, the degradation 
caused by the raised-cosine filter is the same in C / N  and Eb/No. 

2. C/ I denotes the average carrier-to-interference power ratio. 
3. C / D  denotes the average power ratio between the main-path signal and the 

delayed-path signal. 
4. T/T, denotes the delay of the secondary path normalized to the symbol period. 

Figures 10.20 to 10.23 show some representative numerical results. Figure 10.20 
shows the BER (P(e ) )  versus C I N  of r/CDQPSK in a flat, slow, Rayleigh fading 
channel corrupted by AWGN and co-channel interference. No Doppler spread and 
time dispersion are assumed. That is, the mobile speed is zero and there is no second 
ray of signal. The filter roll-off factor a = 0.2. The numbered curves are for different 
values of carrier-to-interference ratia4 Inspecting these curves carefully, we can 

This is the ratio between the equivalent noise bandwidths of the simulated system and the matched 
filtering system where a Nyquist filter is used in the transmitter and the receiver, The Nyquist filter is 
the most narrow-banded filter without ISI. But Nyquist filter is susceptible to timing jitters and more 
difficult to implement. It can be easily shown that the equivalent noise bandwidth of a raised-cosine 
filter is f p~ (1  - 0.25~1). Thus the total equivalent noise bandwidth of the simulated system is 
(1 + a ) ( l  - 0 . 2 5 a ) f N .  

Curve (5) corresponds to a flat, slow, Rayleigh fading channel without CCI. So this curve should be 
equivalent to that in Figure 10.5. Recall that we just argued that C / N  is greater than & / N o  by 3 dB 
and there is also a 0.57 dB degradation due to the filtering, then the C / N  curve should be shifted to the 
right by 3.57 dB compared with the E b / N o  curve. By comparing them we can see this is true. 
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P(e) VS. CIN in slowly flat fading channels 

O O  

Figure 10.20 BER ( P ( e ) )  versus C / N  of ~/4-DQPSK in a flat, slow, Rayleigh fading channel 
cormpted by AWGN and co-channel interference. f, = 850 MHz, f, = 24 kbps, a = 0.2. No Doppler 
spread and time dispersion. C / I  = ( 1 )  20, (2) 30, (3) 40, (4) 50, (5) cm dB. From [ I  11. Copyright @ 
1991 IEEE. 

see that when C / N  is approximately equal to CII ,  the effect of the CCI begins to 
become dominant. When C / N  is much greater than C / I ,  the effect of the CCI is an 
irreducible error floor. This is no surprise since the co-channel signal is just another 
noise to the main channel signal. 

Figure 10.21 shows the effect of mobile speed, or equivalently, the Doppler 
spread. No CCI and time dispersion are assumed. Again a = 0.2. The curves are 
for speed from 0 to 75 miles per hour (mph). It is seen that even when there are no 
CCI and no noise (CIN -+ m), there are still errors as long as the mobile speed is 
not zero. The errors are caused by the random phase modulation of the fast channel 
(due to motion of the mobile). 

Figure 10.22 illustrates the BER of n/4-DQPSK in a frequency-selective slow 
fading channel. There are no AWGN, CCI, and Doppler spread. The curves are 
drawn versus CID, using r /TS as a parameter. Comparing Figure 10.22 to 10.2 1, it 
is seen that for small r / T S ,  the system can tolerate stronger delayed signal than CCI. 
For r that approaches Ts, the BER caused by delayed signal approaches that caused 
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P(o) vs. CIN In Faat flat trding channels 

CIN (dB)  

Figure 10.21 BER versus C / N  of n/4-DQPSK in a flat, fast, Rayleigh fading channel corrupted by 
AWGN. No CCl and time dispersion. f, = 850 MHz, f, = 24 kbps, a = 0.2. v = ( I )  0, (2) 25, (3) 50, 

(4) 75 mph. From [ l l )  Copyright @ 1991 IEEE. 

by a CCI as we expect since the information source is assumed uncorrelated. 
Figure 10.23 illustrates the BER of */4-DQPSK in a frequency-selective fast 

fading channel. No AWGN or CCI are present in the channel. This figure shows that 
when the delayed signal is comparable to the main-path signal ( C / D  close to 0 dB), 
the error rate is controlled by the frequency selectivity ( r /TS) .  When delayed signal 
power is small, BER is controlled by fast fading (speed v). 

The simulation in [13] is for a two-ray Rayleigh fading model and rneasurement- 
based models. The two-ray model is the same as that given in ( 1 0.34) and the filtering 
strategy is also the same as in [ H I .  The simulation results confirm the analytical 
results by Liu and Feher [N].  

10.5 MHPM IN FADING CHANNELS 

The performance of the rectangular frequency pulse multi-h modulation scheme 
(IREC-MHPM, also known as multi-h CPFSK) is evaluated for slow, flat or fre- 
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P(e) vs. C/O in slowly selectively tading channels 

Figure 10.22 BER versus C / D  of n/4-DQPSK in a frequency-selective slowly fading channel. No 
AWGN, CCI and Doppler spread. f, = 850 MHz, fs = 24 kbps, a = 0.2. r/T3 = (1) 0.1, (2) 0.2, (3) 

0.3, (4) 0.4, (5) 1.0. From [ll) Copyright @ 1991 IEEE. 

quency selective Rician and Rayleigh channels with Doppler frequency shift [14J The 
evaluation is performed with a method combining analysis and simulation. Perfor- 
mance degradations are evaluated for various direct-to-reflected signal ratio, Doppler 
shifts, and relative time delays in Rician fading channels. The channel model is a 
two-ray model consisting of a direct signal without fading, and a reflected signal 
with Rayleigh fading. AWGN is also included. The satellite-to-ground vehicle chan- 
nel and the airplane-to-ground channel, where MHPM schemes are likely to be used, 
are of this type. The received signal is 

where 
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Figure 10.23 BER versus C / D  of x/4-DQPSK in a frequency-selective fast fading channel, No 
AWGN, CCI. f, = 850 MHz, fs = 24 kbps, a = 0.2. (1) T / T ~  = 0.1, u = 25 mph, (2) T/TS = 0.1. 

v = 75 mph, (3) r /Ts  = 0.5, v = 25 mph, (4) r /Tg = 0.5, v = 75 mph. From [ll] .  Copyright @ 

1991 1EEE. 

is the direct component, 

is the reflected component, and n(t)  is the AWGN. The parameters are defined as 
follows: 

E = symbol energy; 
w, = carrier angular Frequency; 
ai = information data, ai E [+I, -11; 
A1 = even constant and a power of  2; 
hi = one of  a set of modulation indexes (hl  , h 2 ,  . . . h K ) ;  
$i = the phase at the beginning of the i th interval; 
vi = Rayleigh envelope; 
pi = uniformly distributed phase in (0 ,Zr ) ;  
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T = delay of the Rayleigh signal with respect to the direct signal. 
The direct component of signal experiences a Doppler shift A d  due to the rel- 

ative motion between the transmitter and the receiver. For the coherent detection of 
1 REC-MHPM, the carrier needs to be recovered at the receiver. Since the direct sig- 
nal is usually dominant, the recovered local carrier frequency is the same as the direct 
signal frequency, which is denoted as w,. Note that it is different from the transmitted 
frequency by Aw. The Doppler shift is not explicitly included in the Rayleigh fading 
signal model since its effect is modeled by the Rayleigh envelope and the random 
phase. Therefore Rayleigh signal has the same carrier frequency as the transmission, 
but it is different from J, by Aw.  There is also a delay 7 in r, (t) with respect to the 
direct component r d  (t). 

Recall that 1 REC-MHPM can be demodulated by an MLSE demodulator using 
four correlators and the Viterbi algorithm (see Section 7.5.1). The simulation in [I41 

is based on the analytical results of the correlators' outputs and the Viterbi algorithm. 
A similar method was used for the AWGN channel (1 51. 

In the simulation the two independent Gaussian processes which produce the 
Rayleigh fading envelopes are bandlimited by a 6th order Butterworth low-pass filter. 
It has a bandwidth of the fading process determined by the Doppler spread of the 
channel which, in turn, is determined by the mobile speed. 

In the simulation it is found that Pb increases with the increase of Doppler 
shift fd slightly, where fd = A f Ts is the Doppler shift normalized to the symbol rate. 
However, the effect of fd is not as significant as that of other parameters. Therefore 
when we examine the effect of other parameters, we set fd = 0.2 which gives an av- 
erage value of Pb in the practical range of fd. The simulation results are summarized 
in the following figures. 

Figure 10.24 shows various Pb plots of Rician fading for different K, the direct- 
to-reflected signal power ratio, and normalized delay td = TIT, for the I R K -  
MHPM scheme with Hz = (2/4,3/4). When K = 0 we arrive at Rayleigh fading. 
It is seen from the plot of Rayleigh fading that the bit error rate Pb is very high 
(0.25 - 0.26). This is due to the fact that the simulated receiver is not synchronized 
to the reflected component.' When the content of Pd is increased, that is, when a 
carrier is recovered at the receiver from the direct signal component, a significant 
improvement in Pb is observed (see plots for K = 0,5,10, and 20 dB). The Pb at 
K = 20 dB is comparable to that in the presence of only AWGN. For Pb = 

In the simulation, the Rayleigh channel is obtained as a special case of the Rician channel where 
carrier synchronization is established for the direct signal. When the power of the direct signal is reduced 
to zero, the channel becomes pure Rayleigh without carrier synchronization. If synchronization was 
established for the Rayleigh signal, the BER performance would be improved and BER curve would be 
similar to that of BPSK or QPSK (see Figure 10.4) since the BER expression of MHPM is also of the 
form of a Q function (see (7.28)). 
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Figure 10.24 Performance of I R K - M H P M  H:! = (2/4,3/4) in Rayleigh, Rician, and AWGN chan- 
nels for various values of K and td  ( fd = 0.2). Rayleigh channel is approximated by K = -200 dB, 

and no synchronization is done for the Rayleigh fading signal. From f 141. Copyright @ 1997 IEEE. 

the performance degradation at K =10 dB and td = 0, with respect to the AWGN 
channel, is about 2 dB. Due to the Rayleigh component in the signal these plots show 
error floors. Figure 10.24 also shows the effect of td on the &. It is seen that when 
td increases Pb increases steadily, especially when td 3 0.6. This is due to the fact 
that when td is much larger than 0, the channel becomes frequency-selective, which 
causes additional distortion of the signal on top of fading and AWGN. This in turn 
increases the Pb. However, they can be largely removed if a channel state tracking 
mechanism is incorporated. 

Figure 10.25 is similar to Figure 10.24 except that it is for H3 = (4/8,5/8,6/8). 
Again we see that the direct-to-reflected signal ratio K and td have significant impact 
on Pb. 
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Figure 10.25 Performance of 1REC-MHPM H3 = (4/8,5/8,6/8) in Rayleigh, Rician, and AWGN 

channels for various values of K and td (fd = 0.2). Rayleigh channel is approximated by K = -200 

dB, and no synchronization is done for the Rayleigh fading signal. From [ 14). Copyright @ 1997 IEEE. 

The performance comparison of MSK and IREC-MHPM schemes in Rician 
fading is ploned in Figure 10.26, for K = 10 dB and td = 0 and 1.0. This figure 
compares the MSK, Hz = (2/4,3/4), and H3 = (4/8,5/8,6/8). The solid lines are 
for the td = 0 case, and the dotted lines are for the td = 1.0 case. The performance of 
Hz = (2/4,3/4) is found to be superior to MSK by about 2 dB for td = 0 throughout 
the Eb/N,  range. This coding gain is slightly larger than that in the AWGN chan- 
nel (1.4 dB)[16]. Comparing H3 = (4/8,5/8,6/8) with MSK, the coding gain is 
around 3 dB for td  = 0 which is slightly larger than that of AWGN channel (2.8 dB). 
For td = 1.0, MSK suffers from more loss in Pb than MHPM schemes. This indi- 
cates that these I REC-MHPM schemes have retained their coding gain over MSK in 
fading channels and are subject to less loss in error performance when delay spread 
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Figure 10.26 Comparison of MSK, Hz = (2/4,3/4), and H3 = (4/8,5/8,6/8) in Rician channel 
(K = lOdB,  f d  = 0.2). From [14]. Copyright @ 1997 IEEE. 

increases. 

10.6 QAM IN FADING CHANNELS 

Because of its great bandwidth efficiency, applications of QAM in fading channels 
have always been attracting interest. In this section, we first evaluate the error per- 
formance of the square M-ary QAM in a slow, flat Rayleigh or Rician fading channel, 
using the technique developed in Section 10.2. Then we present the star-QAM which 
is particularly suitable for fading channels. 
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10.6.1 Square QAM 

Substituting the P, expression for square M-ary QAM and corresponding fading 
distributions into (10.17), we can easily evaluate the symbol error probability of the 
square M-ary QAM in fading channels. If the bit-symbol mapping is Gray coded, as 
usually it is, the bit error probability can be found using the P,-Pb relation expression 
(8.57). 

At high SNRs, the P, expression is (8.55) which is in Q-function form. We can 
directly use (10.24) to obtain the result. Note that in (8.55) E,,, is the energy per 
symbol, that is E,,, = Eb log, M, then in fading channel (8.55) can be written as, 

Comparing (10.36) with (10.19) we can recognize 

and 

Substituting them into (1 0.24) we have 

P, = ( J7i? - [ - J] 2(M - 1) f 3r log, M ' (10.37) 

(for square QAM at high SNR) 

Note that when M = 4, square QAM degenerates to QPSK. In this case, we can 
easily check that (10.37) reduces to (10.25) except for a factor of two, since one is 
P, and the other is Pb. 

At low SNRs, (10.37) can induce big inaccuracy just as (8.55) would for an 
AWGN channel. Therefore we need to use (8.53) and (8.54) in conjunction with 
(10.18) in (10.17) to obtain the results numerically. Equation (8.53) must be rewritten 
in terms of Y~ as 

Figure 10.27 shows the numerical results which are accurate at both low and high 
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Figure 10.27 Bit error rates of square QAM in a slow, flat, Rayleigh fading channel. 
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Figure 10.28 Bit error rates of square QAM in a slow, flat, Rician fading channel. hl = 16. 
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Figure 10,29 Bit error rates of square QAM in a slow, flat, Rician fading channel. Ad = 64. 
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Figure 10.30 Bit error rates of square QAM in a slow, flat, Rician fading channel. hf = 256. 
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SNRs. 
For slow, flat, Rician fading channel, we can numerically find out the error 

performance using the same set of formulas except that the distribution density is 
(10.3 1) instead of (10.18). Figures 10.28 to 10.30 show the numerical results for 
M = 16,64, and 256. 

10.6.2 Star QAM 

In Chapter 8 we have stated that star QAM is not optimum in terms of dmi, under 
the constraint of average phasor power. Therefore it is not a preferable choice in 
an AWGN channel. However, it allows efficient differential encoding and decoding, 
which makes it suitable for fading channels. Recall that we have discussed differen- 
tial coding for square QAM in Chapter 8. That is for the purpose of resolving phase 
ambiguity in carrier recovery. The method of differential coding for star QAM is 
different and the purpose is different too: to avoid carrier recovery and enable dif- 
ferential detection of signals. 

For the M-ary star constellations, such as the one in Figure 8.5(a), assume A f  = 
2", there are A l l  = 2"' amplitudes (cycles) and there are M2 = 2"' phases (points 
on a cycle), where nl + n2 = n and 1LI = M1M2. For example, when nl = 1, n2 = 
3, we have the 16 star QAM in Figure 8.5(a). 

For the star QAM, since there are MI amplitudes, the average power is 

where Ai is the amplitude of the ith phasor in the constellation. From (10.39) and 
(8.49) we have the PSD of the star QAM as 

The signal points in the star QAM can be easily encoded differentially [u,  p. 3251. 
Use the star 1 d Q A M  as an example. Of the four bits in each symbol, b l ,  b2, b3, and 
b4,  the first bit is used to encode the amplitude change. For example, a 1 denotes the 
signal amplitude is changed and a 0 denotes no change. The rest of the four bits are 
Gray coded to denote the phase changes. For example we can code 000 as no phase 
change, 001 as 7r/4 change, etc. Table 10.2 shows the coding scheme. The Hamming 
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Pattern no. Bit pattern (b2b3b4) 
000 

Phase change (AQ,) 
0 

~ / 4  
2 ~ / 4  
3x14 
47r/4 
5n/4 
67~ /4 
77r /4 

Table 10.2 Gray -coded phase changes. 

distance between two adjacent bit patterns (including no. 1 and no. 8) is one and the 
corresponding phase changes differ by 7r/4 which is the smallest increment. These 
patterns are not mapped into transmitted symbols, instead they are mapped into the 
phase differences of two consecutive transmitted symbols. When two symbols are 
received, first their amplitude is detected and bl is determined. Next their phases 
are compared to determine what is the A&. From A&, using a lookup table like 
Table 10.2, bit pattern b2b3b4 can be determined. When A& is corrupted by noise 
and fading, and a detection error is made, most likely the error is made by taking one 
of the adjacent bit patterns. This leads to only one bit error because of Gray coding. 

In the fading channel, the signal amplitude varies. Thus the threshold for am- 
plitude detection is made adaptive. Let A1 and A2 denote the amplitudes of the two 
rings in the star 16-QAM constellation. Assume the received phasor amplitudes are 
Zk and Zk+l at time t = kTs and (k + 1)T,. The algorithm used in [17. p. 3251 is as 
follows. If 

then a significant change in amplitude is deemed to have occurred and bit bl is set to 
logic 1 at time (k + l)Ts. This detection rule does not rely on the absolute value of 
the received signal amplitude, rather it depends on the relative amplitudes of the two 
consecutive signal amplitudes. This is exactly what is needed in a fading channel. 

Figure 10.3 1 shows some simulation results for various 16-QAM schemes. The 
simulation parameters are as follows. The carrier frequency is 1.9 GHz, the symbol 
rate is 16 k symbol/s, the mobile's speed is 30 mph and the channel exhibits Rayleigh 
fading with AWGN. Both transmitter and receiver use a fourth-order Butterworth 
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Figure 10.3 1 BER for various 16-QAM schemes using different demodulations. From 1173. Copyright 
@ 1994 IEEE. 

low-pass filter with a 3 dB point at 1.5 times that Baud rate. Curve (a) is the square 
16-QAM performance, which is worse than that given in Figure 10.27 where no 
filtering is assumed. Curve (b) is the performance of the differential star 16-QAM, 
which is largely enhanced compared with square 16-QAM. Curve (c) is again for star 
16-QAM, but an oversampling technique is used. By this technique, n. = 8 samples 
equally spaced in time are made per symbol period. The variations observed in these 
samples are used to modify Zk and Zk+l, hence improve the amplitude detection 
(see [ I  7. p. 3251 for detail). Curve (d) is for star 16-QAM with two-antenna switched 
diversity where the larger of the two signals received are selected. Curve (e) is the 
performance of star 16-QAM in an AWGN channel. From this figure it is seen that 
differential star QAM improves BER performance in fading channels significantly. 

10.7 REMEDIAL MEASURES AGAINST FADING 

From the above discussion we can see that fading, especially Rayleigh fading, can 
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reduce the BER performance of a modulation scheme significantly. Remedial mea- 
sures against fading must be adopted in order to preserve or at least partially preserve 
the BER performance. In this section, we just briefly point out these measures. A 
detailed discussion is beyond the scope of this book. The purpose of this brief discus- 
sion is to provide a general idea of remedial measures against fading and references. 

The first, also simplest, measure against fading is to use a differential modula- 
tion scheme where carrier phase synchronization is not required. Up to 3 dB loss in 
error performance is expected. In the above discussion, the performance of DBPSK 
and a/4-DQPSK in fading channels has been addressed. Additional references exist 
for DBPSK and differential MSK in Rician fast fading environment [ I  81, differential 
GMSK in land mobile channel [MI, narrow-band ~/4-DQPSK in Rayleigh fading 
channel 1201, and multiple-symbol differential detection of x/4-DQPSK in land mo- 
bile satellite communications channels [21 I. 

If the loss due to differential coding is not allowed, then coherent demodulation 
is required. To help the receiver establish carrier phase synchronization in a fading 
environment, a pilot tone or pilot symbols can be used. A technique called transpar- 
ent tone in band (TTIB) is proposed for various mobile applications by McGeehan, 
Bateman et a1 [22,23], and is also described in [v]. In TTIB systems for mobile radio 
applications, a spectral gap of a certain bandwidth is allocated in the center of the 
signal spectrum to allow insertion of the pilot tone. The frequency of the pilot tone 
is usually the carrier frequency in order that it can assist the receiver in carrier recov- 
ery. An alternative to TTIB is the pilot symbol assisted modulation (PSAM) [24-27] 
. In this method, known phasors are inserted into the data stream. The receiver ex- 
tracts channel attenuation and phase rotation information from the received known 
symbols and uses it for fading envelope and phase compensation. 

Another efficient remedial measure is the diversity technique [ I ,  41. The concept 
of diversity is to enable the receiver to receive more than one signal at any moment. 
It is very unlikely that all signals are in deep fade. Therefore the receiver can usually 
receive adequate signal power by choosing the strongest signal, or combining them 
together. There are five major categories of diversity techniques. 

1. Space diversity. It is usually achieved by using more than one receiver antennas. 
The spacing between antenna is choosing so that the received signals experience 
uncorrelated fading. A spacial separation of a half-wavelength is usually enough 
for two-dimensional isotropic scattering. This is called microscopic diversity. 
Another type of space diversity is achieved by selecting different base stations. 
Shadowing due to variations in terrain and the nature of surroundings causes 
large-scale fading. By selecting a base station which is not shadowed, the mobile 
can improve its signal-to-noise ratio in the forward link significantly. This is 
called macroscopic diversity, Macroscopic diversity can also be used in the 
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base station receiver. By using multiple base station antennas, the base station 
receiver can choose the strongest signal From the mobile. 

2. Polurizution diversity. A scattering environment tends to depolarize a signal. 
Receiver antennas having different polarizations can be used to obtain diversity. 
An example is the use of vertical monopole and patch antennas in cellular 
telephone user units. Another application of polarization diversity is at the 
base station. At base station space diversity is less practical because the narrow 
angle of incident fields requires large antenna separation. However, orthogonal 
polarization diversity is possible since many users are using portable units and 
the signal polarizations are no longer pure vertical due to hand-t ilting. 

3 .  Frequency diversity. This is achieved by transmitting the same signal on 
multiple carriers. These carrier frequencies are separated by at least the coherent 
bandwidth of the channel. Thus each signal does not experience the same 
fading. Frequency diversity is often used in microwave line-of-sight links using 
frequency division multiplexing (FDM). In these links deep fading may occur 
due to tropospheric propagation and resulting refraction. A spare frequency 
channel is usually provided for several frequency channels, each carrying an 
independent traffic. If any one of the frequency channels is experiencing deep 
fading, its traffic can be switched to the spare channel. 

4 .  Tzme diversity Signals are transmitted in multiple time slots separated by at 
least the coherence time of the channel. For example, repetition codes transmit 
a symbol in several time slots. Other sophisticated error control codes encode 
a message sequence into a longer coded sequence. This is also a type of time 
diversity because the information is distributed on the entire code so if a part 
of it is erased the information can still be recovered. Interleaving is usually 
used in combination with error control codes. When an interleaved sequence is 
deinterleaved at the receiver, bursty errors are spread out and become isolated 
errors which can be easily corrected by the error control code. Interleaving 
effectively separates the symbols corresponding to a message by more than the 
channel coherence time, 

5 .  Multipath diversity Using a tapped delay line the energy in the multipath 
components can be collected and their weighted sum becomes a stronger signal. 
This type of receiver is called a RAKE receiver since the block diagram is just 
like a garden rake. Multipath diversity is also sometimes considered as time 
diversity since signal components at different times are collected. 

There are also other diversity techniques. The angle diversity or direction diver- 
sip uses several directional antennas. Each antenna receives plane waves arriving 
from a narrow range of angles. Signals received by different antennas are thus un- 
correlated. A new technique is called diversip transform [28] which transforms the 
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message sequence into another sequence for transmission. However, unlike error 
control coding, it does not increase the length of the sequence. 

It is not enough to just have diverse signal sources (called diversity branches) for 
the receiver. It is important how the receiver processes these signals. The process- 
ing techniques are called diversity combining techniques. The predetection selec- 
tive combining technique selects the signal with the highest signal-to-noise ratio. 
The predetection and postdetection maximal ratio corn bining technique corn b ines 
weighted signals from all diversity branches. Each signal is weighted by its com- 
plex fading gain which must be estimated at the receiver. This technique gives the 
best possible performance among the diversity combining techniques. If the signals 
are not weighted, then the process is called predetection andposfdetection coherent 
equal gain combining. The predetection switched combining technique uses a scan- 
ner to scan through the diversity branches until it finds one that has a signal-to-noise 
ratio that is above specified threshold. This branch is used until the signal-to-noise 
ratio drops below the threshold, then the scan process starts again. 

Refer to [1.4] for detailed treatment of diversity techniques and diversity com- 
bining techniques. 

Finally we need to point out that equalization is also an important remedial 
measure against fading. Equalization eliminates the intersymbol interference caused 
by the multipath propagation as well as bandlimiting of the channel. Refer to [1,4] 

for detailed discussion of equalization techniques for fading channels. 

10.8 SUMMARY 

In this chapter we studied the error performance of modulation schemes in fading 
channels. First we briefly studied the characteristics of fading channels in terms of 
four important parameters: delay spread, coherence bandwidth, Doppler shift, and 
coherence time. Using these parameters, we classified fading channels into slow 
or fast, frequency-nonselective (flat) or frequency-selective. We observed that slow 
channels are more common than fast channels which occur only when data rate is 
very low. We described the major fading envelope distributions: Rayleigh and Ri- 
cian. The flat-fading-channel (Rayleigh and Rician) performances of common bi- 
nary and quaternary schemes, namely, BFSK, BPSK, DBPSK, QPSK, OQPSK, ~ / 4 -  
DQPSK, and MSK including GMSK were treated in great details. Error probability 
expressions were derived and plots were given. It was observed that Rayicigh fad- 
ing and low-K Rician fading cause substantial degradation in error performance. 
The rapid exponential roll-off of the AWGN channel performance curves become 
slow reciprocal roll-off in fading channels. The performances of above schemes in 
frequency-selective channel were studied through simulation and the results were 
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presented in Section 10.3. Irreducible enor floors are the feature of the perfor- 
mances in frequency-selective channels. The error floor increases with increasing 
delay spread, and decreasing filter bandwidth. The fading-channel performance of 
r/4-DQPSK was covered in great detail in Section 10.4. This coverage included the 
performance in a flat-fading indoor channel, and performance in a two-ray Rayleigh 
fading channel (slow or fast) with CCI and Doppler shift. As expected, performance 
degrades with increase in CCI and Doppler shift. The plots given can be valuable 
reference resources for design engineers. The simulation results of the performance 
of IREC-MHPM or multi-h CPFSK in slow, flat or frequency-selective Rician and 
Ray leigh channel were presented in Section 1 0.5. The fading channel performance 
of square QAM was discussed in Section 10.6. We also introduced the star QAM in 
Section 1 0.6. The star constellation can be easily differentially coded and decoded, 
releasing the requirement of carrier phase synchronization. Finally, in Section 1 0. 7 
we briefly introduced remedial measures against fading. These including differen- 
tial coding, pilot tone or pilot symbol techniques, and most importantly, the diversity 
techniques. 
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Appendix A 

Power Spectral Densities of Signals 

In this appendix we deal with the problem of finding spectra of signals and power 
spectral densities (PSDs) of noise and modulated signals. The reader is assumed to 
have an understanding of the characteristics of deterministic signals and their Fourier 
transform or series, characteristics of random processes, their correlation functions, 
and their power spectral densities. Based on this knowledge, we concentrate on find- 
ing spectra of bandpass signals and PSDs of bandpass random processes, and PSDs of 
digitally modulated signals in baseband or passband. Specifically, formulas of PSDs 
of baseband digital signals (line codes), quadrature modulations (MPSK, MSK, etc.), 
and continuous phase modulations (CPM) are derived. 

A.1 BANDPASS SIGNALS AND SPECTRA 

Consider a signal in the form 

where a ( t )  is the amplitude (envelope), B ( t )  is the phase, and f c  is the carrier fre- 
quency of s ( t ) .  For signals of practical interest, a ( t )  and B(t) are slow-changing 
functions of t ,  compared with the carrier frequency. Thus the bandwidth occupied 
by the signal is small relative to the cmier frequency. Such a signal s ( t )  is called a 
narrowband bandpass signal, or simply, a bandpass signal. The signal can be rewrit- 
ten as 

s ( t )  = a( t )  cos B(t) cos 2a fct - a ( t )  sin B(t) sin 27r fct 
= x ( t )  cos(27r f c t )  - y ( t )  sin(2.rr f , t )  

where 
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are called inphase and quadrature component, respectively. We will show that the 
frequency components of x(t) and y (t) are concentrated near f = 0. Thus these two 
signal components are called low-pass signals. 

By defining the complex envelope of s ( t )  as 

we can write 

where Re[ ] denotes the real part of the content of the brackets. 
The Fourier transform of the signal s ( t )  is 

1 - 
= - [S(f - fc) + P(-f - fc)] 2 

where * denotes conjugate, and S( f )  is the Fourier transform of the complex enve- 
lope Z( t ) .  Note that S(  f) is in general a complex function. Its magnitude IS( f) 1 is 
called the amplitude spectrum and its argument is called the phase spectrum. 

Since the frequency components in the spectrum of s ( t )  are concentrated around 
f,, the above expression indicates that the frequency components of 3( f ) rnus t be in 
the neighborhood of zero frequency. In other words, the complex envelope S( t )  is a 
low-pass (or baseband) signal. Complex envelope is also called equivalent baseband 
or low-pass signal. Equation (A.2) is a very important expression which shows that 
the spectrum of a bandpass signal is the frequency-shifted version of the spectrum of 
its complex envelope. Therefore in many cases it suffices to determine the spectrum 
of the complex envelope. 

The PSD of a signal is defined as the signal power in a unit frequency bandwidth 
(i.e., watts per Hz). The PSD definition is 

Note that PSD is always a real function. Since IS( f ) l  is the amplitude spectrum and 
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is in the unit of volts per Hz, IS( f ) I 2  is in the unit of watts per Hz (on a resistance of 
1 0, so called normalized power). 

For the bandpass signal, (A.2) can be converted into power spectral density form. 
Since S( f - f,) and S" (- f - f,) do not overlap, the PSD of s ( t )  is 

where 

is the PSD of the equivalent baseband signal. 
We will see in the next section that for a random process we cannot define a spec- 

trum, but the power spectral density can be defined for characterizing its frequency 
domain characteristics. 

A.2 BANDPASS STATIONARY RANDOM PROCESS AND PSD 

The major noises, thermal noise and shot noise, in an electronic system are white 
noise. That is, their power spectral densities are flat over a wide range of fiequen- 
cies. In bandpass systems, due to filters in the system, the noise entering the system 
becomes bandlimited. 

Many bandpass signals of practical interest, such as FSK, PSK signals, binary 
or M-ary, may well be represented by (A.1). However, either a ( t )  or B(t) or both of 
them may be modulated by information-carrying symbols. Due to the random nature 
of the information symbols, signal s ( t )  is a random process instead of a deterministic 
signal. 

Thus the description and properties of a bandpass random process, be it noise 
or signal, and its spectral density are of interest. In this section we will establish the 
relation between the bandpass stationary random process and its equivalent baseband 
stationary random process, and the relation between their power spectral densities. 

Consider a wide-sense stationary random process n ( t )  with zero mean and a 
PSD of Q,( f ) .  The PSD is concentrated about it fc, and is zero outside a certain 
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interval, where f, is called the carrier frequency. The process is called a narrow- 
band bandpass process if the width of the spectral density is much smaller than f,. 
Similar to narrow-band bandpass signals, a narrow-band bandpass process can be 
represented by any one of the three different forms [ I ,  21 

where a ( t )  and B(t) are the random amplitude and phase, x( t  ) and y ( t )  are the in- 
phase and quadrature components which are also random, and E(t) is the complex 
envelope of n( t ) ,  

E ( t )  = x ( t )  + jy(t) 

which is random too. 
The autocorrelation function of n(t) is 

where 
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Since n(t)  is stationary, its autocorrelation function must not be a function of time 
t .  Therefore the second and fourth term in the above expression must be zero. This 
leads to 

and 

and 

Rnn ( T )  = Rxx (7 )  cos 2* f , ~  + Rxy ( T )  sin 2~ fcr (A-7) 

Using the definitions one can check that the autocorrelation functions Rx, ( r )  and 
Ryy (7) are even functions. From (A.6) we can derive an important property of the 
cross-correlation function of x ( t )  and y ( t )  

Thus RYx(r )  is an odd function of T .  Due to the relation of (A.6), Rzy (7) is also 
an odd function of T .  This in turn verifies that R,, (7) is an even function of s, as it 
should be from its definition. 

The autocorrelation function of the complex envelope E ( t )  is 

1 
R ( r )  = - E [ Z ( t ) Z *  ( t  - T ) ]  

2 

Using (A.5) and (A.6) we have 

This relates the autocorrelation function of the complex envelope to the autocorrela- 
tion functions of the quadrature components. Further, from (A.9) and (A .8) we can 
see that 

R%%(T) = R : E ( - ~ )  (A. 10) 

The power spectral density of it is the Fourier transform of the autocorrelation func- 
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tion (Wiener-Khintchine relation): 

This means that q6 ( f )  is a real-valued function 
Using (A.7) and (A.9) we have 

o f f .  

(A. 11) 

Rnn ( T )  = R ~ [ R % ,  ( ~ ) e j ~ ~ f ~ : ~ ]  (A. 12) 

This indicates that the autocorrelation function of the bandpass stationary random 
process is completely determined by the autocorrelation function of its complex en- 
velope. Consequently the power spectral density of n(t)  is also completely deter- 
mined by the power spectral density of Z ( t )  as follows. 

Q'n (f) = .F{R~[R-,% ( ~ ) e j ~ ~ f ~ ~ ] }  

where we have used the frequency shifting and conjugate function properties of the 
Fourier transform (F)  (see I]). Further, since Q6 (f) is real-valued (see (A. 1 I)), the 
above equation can be finalized as 

(A. 13) 

This equation indicates that the PSD of a bandpass stationary random process, be 
it noise or signal, is completely determined by the PSD of its complex envelope or 
equivalent baseband signal. It consists of frequency shifted (also scaled by 112) 
\k3 ( f )  centered at f, and - f, respectively. Thus when we examine the PSD of a 
bandpass stationary random process, it is sufficient to examine the PSD of its com- 
plex envelope or equivalent baseband signal. 

A.3 POWER SPECTRAL DENSITIES OF DIGITAL SIGNALS 

Digital signals are essentially random in nature. For example, in digital telephony 
the digital signals are digitized voice, which are random. In digital television the 
digital signals are digitized image and voice, which are also random. The bandwidth 



Appendix A Power Spectral Densities of Signals 573 

occupied by a digital signal is of the most concern to system design engineers. In 
this section we derive a general formula for the PSD of digital signals. This general 
formula includes cases of correlated data and uncorrelated data. Therefore it can 
be used for a wide range of applications involving baseband signals and bandpass 
signals. 

Let the baseband digital signal be represented by 

(A. 14) 

where a, are discrete random data symbols, g ( t )  is a signal of duration T (i.e., 
nonzero only in [0, TI). Let us name g(t)  as the symbol function. It could be any 
signal with a Fourier transform. For example it could be a baseband symbol-shaping 
pulse or a bunt of carrier at passband. The random sequence {a,} could be binary 
or nonbinary. 

Now to find out the power spectral density of the signal in (A. 
cate the signal to get 

14), we first trun- 

(A. 15) 

Next we assume it is not random and take Fourier transform of both sides of (A. 15), 
the spectrum of this truncated signal is found as 

AN (f) = G( f )  C a n d w n T  

where w = 2n f .  The power spectral density of the original signal in (A. 14) is ob- 
tained by taking the statistical average and time limit of I AJV (f)  l2  as follows. 

Q s ( f )  = lirn 
1 

~ - + m  (2N + 1)T E W d f  ) I 2 }  
N 

= lim an,-jwnT 
~ + m  (2N + l)T 

n = - N  

= lirn 
N-.m (2N + l )T  

n=-N 

1 
= 1c(f)l2 lirn 

~ - 0 0  (2N + l )T 
C C ~ { a , a , , } e j ( ~ - ~ ) " ~  

n=-N m=-N 
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where k = n -m, E{a,a,) = E { u , ~ ~ - ~ }  = R(k)  is the autocorrelation function 
of the data bits. Note that R(-k) = R(k) .  Realizing the inner summations become 
the same regardless of the value of index n when N -, oo, we obtain 

Equivalently this is 

Now we discuss two possible cases of R(k) .  

A.3.1 Case 1: Data Symbols Are Uncorrelated 

Assume a, has a mean of E{a,) = ma and a variance of a:, then 

Substitute this for R(k) in (A. 16) we have 

By revoking the Poisson sum formula ([I] p.62) 

(A. 16) 
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where b( f )  is the impulse function, we have 

That is, for uncorrelated data 

(A. 17) 

(A. 18) 

The first term is the continuous part of the spectrum which is a scaled version of 
the PSD of the symbol-shaping pulse. The second term is the discrete part of the 
spectrum which has spectral lines at frequencies k/T (i.e., multiples of the data rate). 
The spectral lines have an envelope of the shape of the PSD of the symbol-shaping 
pulse. Each spectral line has a strength of ( r n , / ~ ) ~ 1 G ( k / ~ ) 1 ?  

In digital communications, the most common case is that the data bits are binary 
(f 1), equiprobable, stationary, and uncorrelated. That is 

where a ,  = +l or -1 with equal probabilities, and E{a,a,} = E{a,, )E{a ,  } for 
n # rn. It is easy to see that its mean is zero: 

and its variance is 

Further, since a, are uncorrelated and stationary, then 

Now refer to (A. I8), note that rn, = 0 and 0: = 1, the second term becomes 0 and 
the PSD of the signal is 

(A. 19) 
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This is a very important expression which will be used often in evaluating PSD of 
digital modulated signals. It shows that the PSD of a binary (H), equiprobable, 
stationary, and uncorrelated data sequence is just equal to the energy spectral density 
IG( f )I2 of the symbol-shaping pulse g ( t )  divided by the symbol duration. 

Example 1 Data bits are binary (f I), equiprobable, stationary, and uncorre- 
lated. The symbol-shaping pulse is the rectangular pulse: g ( t )  = 1 for (-T/2,  T / 2 )  
and 0 elsewhere. Then from a Fourier transform table, 

From (A. 19) its PSD is 

A.3.2 Case 2: Data Symbols Are Correlated 

For the general case where there is correlation between that data, let Z, be the corre- 
sponding data that have been normalized to have unity variance and zero mean, that 
is En = (a, - m,)/cT,! thus a, = a,& + ma, then 

where 

~ ( k )  = E{EnEn-k} 

is the autocorrelation coefficient. Thus for correlated data 

TI 

continuous spectrum 
Y 

discrete spectrum 

(A.20) 
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where Rd = 1/T is the data rate, and Poisson sum formula is used for the second 
term conversion and 

w d f )  = 

is a spectral weight function which can be obtained from the Fourier transform (3) of 
the autocorrelation coefficient impulse train. Comparing (A.20) with (A. 18) shows 
that the PSD of the correlated digital signal has the same discrete spectral part of 
the uncorrelated one. However, its continuous spectral part has an additional weight 
function which is determined by the autocorrelation coefficient impulse train of the 
data sequence. 

In this section we have derived the PSD of a baseband digital signal by using 
time and statistical average of the Fourier transform of the truncated signal. Another 
method is to use the Wiener-Khintchine relation (Section A.2). That is, we first 
find the autocorrelation fbnction of the digital signal g( t ) .  Then we take the Fourier 
transform to find the PSD expression. See reference 12, p. 1911 for detail. 

A.4 POWER SPECTRAL DENSITIES OF DIGITAL BANDPASS 
SIGNALS 

We have mentioned that symbol function g ( t )  could be any function with a Fourier 
transform defined on [0, TI. Even though the spectral density expressions derived in 
the previous section are used mainly for a variety of baseband digital signals, they 
can also be used for some bandpass signals. For example, g ( t )  could be a burst of 
carrier, sinusoidal, or square waveform. If g ( t )  is a burst of sinusoidal signal, the 
signal s ( t )  would be an ASK signal. The spectrum of g(t) can be easily found as 

and the PSD of the ASK signal is 

which appears as two squared sinc functions centered at f, and - f,? respectively. 
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For bandpass signals with data symbols embedded in the phase or frequency of 
the carrier, the signal cannot be written as the form of (A. 14). We must find another 
way to compute the spectra. 

Many bandpass signals of practical interest, such as FSK, PSK signals, binary or 
M-ary, can be considered as a sum of an inphase component and a quadrature com- 
ponent. There is a rather easy way to compute the PSD of such a signal. We will 
discuss the method here. For other bandpass signals, such as a continuous phase 
modulation (CPM) signal, finding the PSD is much more complicated. We will dis- 
cuss the method in the next section. 

Now consider a carrier modulated bandpass signal in the form of 

where x ( t )  and y ( t )  are the inphase and quadrature components, determined by data 
symbol sequences {xk } and { yk } , respectively. 

The signals p ( t )  and q ( t )  are baseband pulse-shaping functions defined on 10, TI, 
whose Fourier transforms, 

P(f) = W ( t ) }  

and 

Q ( f  = m ( t ) }  

exist. 
We assume that {xk} and {yk} are independent, identically distributed random 

sequences with zero means 

m, = rn, = 0 

and each sequence member has mean square value 

and 
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respectively. Thus {xk) and {yk} are discrete stationary random processes. Accord- 
ing to (A. 13), it suffices to find the PSD of the complex envelope. The complex 
envelope of the signal s ( t )  is 

To calculate the PSD of Z ( t ) ,  we calculate its autocorrelation function first. 

where 

and 

and the cross-correlation terms vanished since they are zero. From the Wiener- 
Khintchine theorem, we have 

where ax ( f )  and Q, (f) are PSD of the inphase and quadrature component, respec- 
tively Comparing the expressions of x( t )  and y ( t )  with (A.14) we realize that we 
can use (A.18) to find Q , ( f )  and Q,(f). That is 

and 

thus 

This expression can be used for all quadrature modulated signals, including M-ary 
PSK, MSK, QAM, etc. 
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A S  POWER SPECTRAL DENSITIES OF CPM SIGNALS 

CPM signal is defined by 

The transmitted M-ary symbols ai are embedded in the phase 

with 

The M-ary data ak may take any of the M values: f 1, f.3, . . . , &(Ail - 1) ,where hrl 
usually is a power of 2. The phase is proportional to the parameter h which is called 
the modulation index. Function g  ( t )  is thefrequency shape pulse. The fbnction g ( t )  
usually has a smooth pulse shape over a finite time interval 0 5 t 5 LT, and is zero 
outside. Function q ( t )  is the phase function. For g ( t )  defined on [O, LT], q ( t )  = 0 
for t  < 0, and q ( t )  reaches the maximum at t  = LT and remains at the maximum 
thereafter. Usually g ( t )  is normalized to have q ( t  > LT) = 112. 

We assume that symbols {ak } are statistically independent and identically dis- 
tributed with prior probabilities Pr(a,) = P,, n = +I,  f 3, . . . , f ( A l  - l), where 
C P ,  = 1. 

The CPM signal can be written as 

s ( t )  = ARe{exp[jZ~f,t+ j @ ( t , a ) ] )  
= A R e { e x p [ j @ ( t ,  a ) ]  e x p [ j 2 ~  f,t]) 

The complex envelope of the CPM signal is (omitting the constant amplitude A, 
which will not affect the shape of the autocorrelation function and the power spectral 
density) 

We now present a simple, fast, and reliable general numerical method of com- 
puting the PSD of the general CPM signal. This method was first given in (31 and 
appeared in [2] and [4] as well. 

First we find the autocorrelation of Z ( t ) .  



Appendix A Power Spectral Densities of Signals 581 

The sum in the exponent can be expressed as a product of exponents 

Now we carry out the expectation over the data symbols. Since they are statistically 
independent, we have 

where P, is the a priori probability of the symbol n. Then we take the time-average 
of the autocorrelation function in [0, TI. (In fact 
duration T would give the same result.) 

averaging over any time interval of 

f T; t ) d t  (A.26) 

Seemingly, there are an infinite number of factors in the product of (A.25), but in 
fact there are only a finite number of terms that have nonzero exponents. Note that 
the integration interval is only in [0, TI. Since q ( t )  is 0 for t < 0 and equal to 112 
for t 2 LT, for most k, the two terms in the exponent in (A.25) will both be zero or 
both be 112. That is, they cancel to zero for all but a finite number of factors. 

Suppose T 2 0 and let T = 5 + mT where 0 5 J < T and m = 0 , 1 , 2 ?  ..., then 
for the exponent to be unconditionally zero, we have to have 

Notice that 0 < t < T and 0 5 < T, then 0 5 t + ( < 2T. From (A.27) we have 
k > rn + 2. From (A.28) we obtain k < -L. Thus for the exponent to be nonzero 
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we need 

1 - L s k < m + l  ( A  .29) 

For other values of the index k, the exponent is zero, the sum of P, becomes 1. Thus 
(A.26) reduces to 

where 

Note that we have assumed that T > 0 in deriving the above expression. However, 
we can use a property of autocorrelation functions to find Rz (7) for T 5 0. It is well 
known that [ 5 ]  

This property can be used to find Rs (7) for T 5 0 fiom values of RZ (7) for T >_ 0. 
Before we proceed to find the PSD of the CPM signal by taking the Fourier 

transform of R: ( T ) ,  we need to study (A.30) for T = ( + mT 2 LT. The results 
will be used in finding the PSD. 

We divide the range of k, in which the exponent is nonzero, given in (A.29), into 
twosegments: 1 -  L 5 k 5 Oandl  5 k 5 m+1. For1 - L 5 k 5 0, wehave 
t + T - kT > ' T  for t E [0, TI. Then q( t  + T - IcT) = q(LT) which is a constant. 
For 1 < k 5 m + 1 we have t - kT 5 0 ,then q ( t  - kT) = 0 always. Thus we have 
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Now notice that 

exp [j2.rrhnq(t + 7 - kT)] 

= e x p [ 3 2 a h n q ( t + [ + m T - k T ) ]  

= exp [j2nhnq(t + < - (k - m ) T ) ]  

= exp[jZ.rrhnq(t +< -iT)] 
1 - L  

where i = k - rn. Using index i, n;:' becomes ni=l-m = n ,+, n:=-L+l . 
For indexes 1 - m 5 i 5 -L, q(t  +< - iT)  = q(LT)  always. Thus (A.32) becomes 

n=-(Ad-1) 
n odd 

M - l  

k=-L+1 n=-(M-I) [ n odd 

(for m 2 L) 

where 

n = - ( M - 1 )  
n odd 

is a constant, independent of T and C F - ~  represents the product n;=';-,: The 
integrand in (A.33) is independent of m, and only depends on 5. We can wr~te the 
autocorrelation function as 

where I$(<) denotes the integral in (A.33) which only need be computed in [O? TI. 
Thus R j  ( T )  is separable in the arguments E and m. To compute Rs ( T )  one only 
needs to compute q(<) in [0, TI and multiply it with the constant C F - ~  which is the 
geometrical decaying factor from symbol interval to symbol interval. 

Now we proceed to find the power spectral density of the CPM signal by taking 
the Fourier transform of R j  (7) 
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Using (A.3 l), this can be simplified as 

in which T > 0. Therefore R; (7 )  need be computed only for positive T values. The 
integral in the above equation can be divided into two parts 

LT Jdm Rz ( T )  e - j 2 n f ' d ~  = 1 R; ( r )  e-jzTfTd, + /(: Rz ( r )  e - j 2 n f T d r  

(A.37) 
where the second integral is 

From (A.34) we know IC,I 5 1. Consider IC, 1 < 1 first. The sum in (A.38) 
is geometric and converges (the well-known sum formula for a geometric series 
xF=-, xn = 1/(1 - I), 1x1 < 1, is used) 

Further, let m = L in (A.35) we have 

Then (A.38) can be expressed in terms of Rs (7 )  as 
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Then (A.36) can be expressed in the following final form 

From this expression we see that Rg (7) only has to be computed over the inter- 
val [O, ( L  + l )T ] .  The Rs ( T )  is most easily computed numerically by using (A.30). 
Then using (A.34) and (A.4 1) the PSD of a general CPM signal can be found for the 
case /CaI < 1. 

A special case is that P, = 1/M, n = f 1, f 3, ..., f (A[- 1). For this case, all 
quantities are real-valued, we have 

and 

Now consider IC, I = 1 case. The analysis here basically follows the one given 
in 131. First we note that when q(LT) = 0, then C, = 1. But this is not our case 
since we have normalized q( t )  so that q(LT) = 112 in the above analysis. For 
q(LT) = 1/27 

n=-(M-1) 
n odd 

When h is not an integer, there are M cases that make (Ca( = 1 for M-ary symbols. 
That is, if the a priori probability of one symbol is 1 and the a priori probability of 
other symbols is 0, then 

These are extreme cases that have very little practical value. When h is an integer, 
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for M-ary symbols, 
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n=-(A!- 1 )  
n odd 

- 1, h odd integer 
+ 1, h even integer 

These two cases make Rs(r)  periodical outside 171 = LT? see (A.35). It is clear 
from (A.35) and (A.45) that when h is odd, the period is ZT, when h is even, the 
period is T. 

Extend the periodic part of R a ( r )  to also cover the interval [-LT, LT], and call 
this part Rdis ( T ) ?  then the rest of Rj(7) can be called R,,,(T), thus 

where Rdis ( 7 )  is strictly periodical and Rco, ( T )  is not. It is obvious that R,,, (7) = 
0, for I T I  2 LT from the above definition. Thus R,&) yields the continuous part 
of the PSD and Rdis ( r )  yields the discrete part of the PSD. 

where Fdis ( f )  is the discrete PSD of Rdis ( T )  that should be computed using formulas 
of Fourier coefficients instead of (A.4 1). When h is even since the period of Rdis ( 7 )  

is T ,  the discrete frequency components appear at f = f k/T,  k = 0 ,1 ,2 ,  . . .. When 
h is odd, Rdis (7) = &I$(<) alternatively for every T seconds, that is, it is a periodic 
function with odd half-wave symmetry [6, p. 1041. Its spectrum would only have odd 
harmonics at f = f (2k  + 1)/2T, k = 0,1,2, .... 

The property that a CPM signal with integer index has discrete frequency com- 
ponents can be used to recover the carrier and symbol timing in CPM receivers. 
However, some of the components may have zero amplitude depending on the spe- 
cific shape of the frequency pulse. 
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Appendix B 

Detection of Signals 

B.1 DETECTION OF DISCRETE SIGNALS 

Detection of discrete signals can be modeled by the classical hypothesis test problem. 
In this section we first examine the binary hypothesis test problem. We will address 
the M-ary hypothesis problem in later sections. 

Decision rule 

Source transition 
' 

r Decision 
+ mechanism 

- 

Figure B. 1 Binary hypothesis test model. 

The binary hypothesis model is shown in Figure B. 1. The source generates an out- 
put which is one of two possible choices. We refer to them as hypotheses, HI and 
Hz In binary digital communications, these two outputs of the source are data I 
and 0. Therefore HI  and Hz can be associated with 1 and 0 being transmitted, re- 
spectively. The signal passes through a probabilistic transition mechanism which 
generates a point in the observation space based on the hypothesis and according to 
some probability law. In digital communications, it is the noisy channel which trans- 
ports the signal but also adds noise to the signal. The observation space in general is 
N-dimensional. Each hypothesis maps into a point in the observation space. Each 
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point is an N-dimensional vector: 

The probabilistic transition mechanism generates points in accord with the two known 
conditional probability densities p(r/H1 ) and p(r/ H ~ ) .  The object is to use this in- 
formation to develop a suitable decision rule, based on which the two observations 
are compared and one of the hypotheses is chosen. To do this we must examine var- 
ious criteria for making decisions. 

B. 1.2 Decision Criteria 

With the binary hypothesis problem we know that either H1 or Hz is true. When 
we make decisions we could choose H I  or Hz.  But a third choice is possible, that 
is, don't know. The third choice is actually used in digital communications. That 
is called erasure. However, we confine our discussion here to decision rules that 
require a choice of two hypotheses. In this case, there are four actions: 

1. H I  true; choose H1 (correct); 
2. H1 true; choose H2 (erroneous); 
3. H2 true; choose H2 (correct); 
4. Hz true; choose HI  (erroneous). 

The first and third are correct choices. The second and the fourth are erroneous 
choices. The decision criterion should attach some relative importance to the four 
possible actions. The method of processing the received data (r) will depend on the 
criterion we select. 

B. 1.2.1 Bayes Criterion 

Bayes criterion is based on the average cost of four actions. We first define four costs 
as 

A 1. C1 = cost of action 1 ; 
- - -- - - - - - - - - 

p(r/ H,  ), i = 1 , 2  are the probability densities of r under the hypotheses Hi .  i = 1,2.  Note t h ~ t  
these two densities both are represented by the same function name p. but they are actually two different 
functions. The difference is indicated by the arguments. We will use this type of notation in the rest of 
this appendix. 
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A 2 .  CZ1 = cost of action 2; 
A 3 .  C22 = cost of action 3; 
A 4 .  C 1 2  = cost of action 4. 

Note that Cij denotes the cost of choosing hypothesis i while hypothesis j is 
true. Then we define the total cost as 

R C1 Pl Pr (choose H I  / H I  is true) 

+Czl Pl Pr (choose H 2 / H 1  is true) 

+C22P2 Pr (choose H 1 / H 2  is true) 

+C12 P2 Pr (choose H2/  H2 is true) (B. 1) 

where PI = P r ( H l )  and P2 = Pr(H2)  are aprioriprobabilities of the hypotheses. 
For each observation r we must choose H1 or H z .  This is equivalent to divide 

the entire observation space Z into two subspaces Z1 and Z2 .  If r falls into Z1 we 
say H1 is true. If r falls into Z2 we say H2 is true. Thus the cost can be written as 

Observing that 

therefore 

We assume that the cost of a wrong decision is higher than the cost of a correct 
decision, that is, 
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In (B.3), to minimize R we should assign all the values of r which make the integral 
J,, (-)dr <O to Z1 and assign all the values of r which make the integral L1 (.)dr > O  
to Z 2 .  Blues of r which make S', (-)dr  =O have no effect on the cost and may be 
assigned arbitrarily (they are assigned to f i  here). Thus the decision regions are 
defined by: If 

assign r to Z2 (i.e., Hz is true), otherwise assign r to Z1 (i.e., H1 is true). Expression 
(B.4) can be written as 

The left-hand-side quantity is called likelihood ratio: 

and the right-hand-side quantity is called threshold: 

Then the Bayes test becomes 

since 1n(m) is a monotonic hnction. In the following we study several cases which 
are important in digital communication. 

B. 1 -2.2 Minimum Probability of Error Criterion 

A reasonable assignment of costs would be like this: let the costs for errors be equal 
and the costs for correct decisions be zero. Then we have Cl2 = C21 = 1 and 
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Cll = Cz2 = 0. The total cost from (B.2) is 

which is the total error probability. Since the Bayes test minimizes R, this set of cost 
assignments is called minimum error probability criterion. Under this criterion, the 
Bayes test becomes 

B. 1.2.3 Maximum A Posteriori Probability Criterion (MAP) 

The minimum error probability criterion is also the maximum aposterioriprobability 
(MAP) criterion. 

Proof The a posteriori probabilities are Pr(Hl/r) and Pr(Hz/r). Denote the 
probability density of r as p(r). The MAP test is 

which is the minimum error probability test. 
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B. 1.2.4 Maximum Likelihood Criterion 

Now we further assume that PI = Pz, that is, the two hypotheses are equally likely. 
This case is the most frequent in digital communications. The minimum error prob- 
ability test becomes 

which is 

This means the decision rule is to compare likelihood functions and choose the largest: 
maximum likelihood criterion. 

B.1.3 M Hypotheses 

Now we consider M hypotheses. For M hypotheses, the risk is 

where the first summation is over choices and the second summation is over hypothe- 
ses. The optimum Bayes detector is the one that partitions the observation space Z 
into regions Zi such that the risk is minimized. The risk expression can be written as 

Let 
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Then 

Each particular r will be included in only one integral. The Bayes detector is sup- 
posed to assign it to the region Zi where it will make the smallest contribution to 
the risk. Clearly this is done by choosing the smallest &(r) and assigning r to that 
region. Thus the detection rule becomes: compute Pi ( r )  and choose the smallest. 

NOW consider the costs, Cii = 0 and Cij = C, i # j .  Then 

It is clear that choosing the largest Pr(Hi/r) is equivalent to choosing the smallest 
pi (r) . SO now the test becomes a maximum a posteriori probability test. If we further 
let C = 1, looking at the risk expression (B. 12) we see that R now is equal to the 
average error probability. So this is also a minimum error probability test. 

Since 

and p(r) is the same to all hypothesis, the alternative of this test is to compute 
p ( r / H i )  Pi and choose the largest. In the following we apply this result to the general 
Gaussian problem (1, pp. 96-97] [2, pp. 91-92]. 

For a general Gaussian problem, there are M hypotheses and the observations 
are N-dimensional vectors which are Gaussian random variables. The density of the 
vector under the hypothesis Hi is 

(B. 13) 
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where pi is the mean vector of r under hypothesis Hi. 

and Ki is the covariance matrix under hypothesis Hi, defined as 

which is an AT x N matrix. 
From above the optimum detector computes 

and choose the largest. Taking the logarithm and neglecting common terms we have 
this decision rule: Compute 

(B. 15) 

and choose the largest. 

B.2 DETECTION OF CONTINUOUS SIGNALS WITH KNOWN 
PHASES 

Binary signals are the most common type of signals, both in baseband modulation and 
carrier modulation. M-ary signals are also used in modulation, especially in carrier 
modulation. In this section we derive the optimum receiver and its error performance 
for binary signals first. Then we progress to address the issues for M-ary signals. 

8.2.1 Detection of Binary Signals 

B.2.1.1 Receiver Structure 

A digital signal waveform with binary signaling consists of two kinds of signals sl ( t )  
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and s2 ( t )  for nT 5 t < (n  + 1)T, n = 0,1,2.. . . To simplify analysis without loss of 
generality, we set time duration as 0 5 t 5 2'. From the point of view of detection 
theory, we say we have two hypotheses: 

HI : s l ( t ) ,  O I t < _ T , i s s e n t  

Hz : sz ( t ) ,  0 5 t < T ,  issent 

The energy of them are 

and 

In general these two signals may be correlated. We define 

as the correlation coefficient of sl (t) and sz ( t ) .  Ip,, 1 < 1. 
The received signal is 

where si (t) is one of the two possible signals, and n( t )  is the additive white Gaussian 
noise with zero mean and a two-sided spectral density of N,/2 .  This implies that the 
autocorrelation finction of n ( t )  is 

(see [2, p.156]), where 6 ( t )  is the Dirac delta function. 
Since n ( t )  is a Gaussian process, the received signal r ( t )  is also a Gaussian 

process with si(t) as its mean value. In order to use the hypothesis test results de- 
scribed above, we need to represent r ( t )  by a set of discrete quantities. Similar to the 
concept of Fourier series, we expand r ( t )  as a weighted sum of a set of orthonormal 
basis functions [ I .  p. 1781 

(B. 16) 
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where 6, ( t )  are orthonormal basis functions and 

(B. 17) 

This can be verified by simply plugging in the sum expression of r (t) into the integral 
and using the orthonormal property of the basis functions. The vector [r l  , r2, - - - , riv] 
is the desired set of discrete quantities, called projections of r ( t )  onto c$+ ( t ) .  It can be 
shown that since q5i ( t )  are orthogonal, is Gaussian and independent of each other. 
The orthogonal basis functions Oji(t) can be found by the Gram-Schmidt procedure. 

In this procedure, we choose the normalized first signal as the first coordinate 
or basis function 

Clearly $, (t ) has unit energy, that is, it is normalized. 

where coefficient sll = 6 is the projection of sl ( t  ) on the coordinate q5, (t  ) . Next 
we define the second basis fbnction as 

where cl must be chosen to satisfy orthogonality of +,(t) with 4, (t) and cz must be 
chosen to satisfy normality of $5 ( t ) .  It is easy to find that 

(B. 18) 

(B. 19) 

The remaining q$(t) consist of an arbitrary orthonormal set whose members are or- 
thogonal to $, ( t )  and &(t) .  However, only the first two coefficients [rl  , r2] depend 
on transmitted signals. Therefore we only need to check these two suflcient statis- 
tics 
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where 

They are Gaussian random variables with zero-means and independent of each other. 
Their variances are identical, that is, 

The mean values of  [rl , Q] are2 

and their covariance matrixes are (from (B. 14)) 

which are identical regardless of Hi. Substituting this into (B. 13), we can form the 

Note that we use pi) for mean values in general cases. Here symbol sij instead of pi j  is used to 
indicate that they are projections of signals onto the basis functions. 
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likelihood ratio 

Taking the logarithm and canceling common terms we have the likelihood ratio test 

where the initial threshold 17 = P2/P1 for minimum error probability criterion. Re- 
alizing that each sum is just the squared magnitude of the difference vector, the above 
expression can be written as 

The left-hand side is the sufficient statistic and the right-hand side is the final thresh- 
old. 

From Parseval's theorem [3, p. 321, 

and 

Thus the receiver can be implemented as in Figure B.2 using two correlators. A single 
correlator implementation is shown in Figure B.3. The threshold y can be reduced 
to simpler form for special cases. When the two signals have the same energy 

which is simply determined by the a priori probabilities and the noise spectral density. 
Further, if the two a priori probabilities are equal, then 7 = 0. This is the familiar 
threshold used in binary communication systems. 
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Figure B.2 Optimum binary receiver: two correlator implementation. 

Figure B.3 Optimum binary receiver: one correlator implementation. 

Sample at 

h(f)=s,(t)- %(f) 

Figure B.4 Optimum binary receiver: matched filter implementation. 
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A correlator with reference signal s ( t )  can be implemented as a matched filter 
with an impulse response 

and sampled at time T. This can be verified by simply checking the output of the 
matched filter at t = T. The output of the matched filter is 

When t = T, 

This is exactly the correlation between r ( t )  and s ( t ) .  From the derivation we can see 
that the correlator output is equivalent to the matched filter output only at t = T, 
the sampling moment. Figure B.4 shows the matched filter implementation of the 
optimum binary receiver. Note that the matched filter impulse response is 

B.2.1.2 Matched Filter Maximizes Signal-to-Noise Ratio 

We derived the matched filter receiver from the correlator receiver which, in turn, 
is derived from the minimum error probability criterion. One would naturally relate 
minimum error probability with maximum signal-to-noise ratio. It is indeed true that 
the optimum receiver's output has the maximum signal-to-noise ratio. This can be 
proved by checking the matched-filter receiver. 

For an arbitrary signal s ( t ) ,  we want to choose a filter which can maximize 
the output signal-to-noise ratio at sampling time t = T. Assume the filter transfer 
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function is H ( f ), and the signal spectrum is S( f ) then the output signal is 

The output noise spectral density is ( H (  f )  l2 % (see [2, p. 471) and the output noise 
autocorrelation function is 

The noise variance is therefore 

The output signal power to average noise power ratio at t = T is 

By using SchwartzS inequality [3, p. 6181 it is easy to see 

Equality of Schwartz's inequality holds only when 

ks(T - t ) ,  0 5 t 5 T 
elsew here 

This is the matched filter. 

B.2.1.3 Error Probability 

Next we proceed to derive the error probability of the optimum receiver. It is con- 
veniently done using the one correlator receiver. We need to check the probability 
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Figure B.5 Decision space. 

Similarly under hypothesis H2 

where 

and n has the same density as before. 
Having seen I = pi +- n, i = 1,2, and n is a Gaussian random variable with 

zero mean and a variance of EdNo/2, we can see that I is a Gaussian random variable 
with mean pi and a variance of EdNo/2. Thus the conditional densities of I are 

where 1 is a value of the random variable 1. Figure B.5 show s these two d ensities 
(assuming p,, < 0). When H2 is true the receiver will make an error if l is on the 
right side of the threshold and vice versa. The average bit error probability is 
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where 
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where 

is called Marcum's Q-function. 
Similarly 

Now we discuss an important case where two signals are equally likely. Then q = 1 

Van Trees [ I .  p. 371 denoted this as erfc. (x). But it is not the same as erfc(x) which is called 
complementary error j~ncrion. 

erfc(x) 2 1 - erf (x)  

where erf(x) i s  the errorfirncfion defined as 

which is usually tabulated in mathematics handbooks. Thus Q ( x )  is related to erfc(x) by 
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and 

The threshold is in the midway between the two mean values in Figure B.5. P ( e / H 1 )  
and P ( e / H 2 )  are the small shaded areas. From the symmetry of the figure we can 
easily see that 

It can also be verified from the error probability expressions using a property of the 
Q function: Q(x) = 1 - Q(-x) .  Thus 

Thus substituting (B.30) into (B.28) we have 

Now substituting (B.25), (B.27), and (B.24) into (B.3 1) we obtain the final result 

This expression shows that the larger the distance ( E d )  between the two signals sl (t) 
and s 2 ( t ) ,  the smaller the Pb. This is intuitively convincing since the larger the dis- 
tance, the easier for the detector to distinguish them. It is also important to note that 
the error probability only depends on the difference signal's energy, not its shape. 

It is also revealing to see the relation between Pb with the individual signal en- 
ergies. Substituting (B.24) into (B.32), 

This expression indicates that Pb depends not only on the individual signal energies, 
but also on the correlation between them. It is interesting to discover that when 
p,, = -1 (i.e., when two signals are antipodaC), Pb is the minimum. If p,, = 0, the 
signals are orthogonal. Pb is not minimum for orthogonal signals. 

Now we consider a common case in digital communications. Two signals are 
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equally likely, have equal energies ( E b )  and are antipodal. Then (B.33) becomes 

If these two signals are equiprobable and equal energy, but orthogonal, then 

B.2.2 Detection of M-ary Signals 

B.2.2.1 Receiver Structure 

Assume iZI hypotheses, the received signal under hypothesis Hi is 

where s i ( t )  is the signal and n ( t )  is the white Gaussian noise with zero mean and a 
PSD of No/2 .  The signal energy is 

and 1Lf signals are correlated 

We have shown in Section B.2.1.1 that r ( t )  can be represented by a vector 
[rl , ,r2, . . T , ~ ]  whose elements are projections of r ( t )  onto a set of orthonormal 
functions $i ( t ) :  i = 1 , 2 ,  . . , N. ri will be Gaussian and independent of each other. 
Like in the binary case, the orthogonal basis functions Gi ( t )  can be found by the 
Gram-Schm idt procedure. They are 

$1 ( t )  = cz [sz ( t )  - cl& ( t ) ]  

where ~ 2 :  c1 are given in (B. 18) and (B. 19), respectively. We can find &(t)  similarly 
by defining 
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where cl and cz are determined by requiring orthogonality and c3 is determined by 
requiring &(t)  to be normalized. The resulting q!+(t) are orthogonal and normal- 
ized. They are orthonormd functions. We proceed this way until one of two things 
happens: 

1. M orthonormal functions are obtained; 
2. N(< M) orthonormal functions are obtained and the remaining signals can be 

represented by linear combinations of these orthonormal  function^.^ 

Then we use this set of orthonormal functions to generate N coefficients 

ri are statistically independent Gaussian random variables with variance of hro/2. 
Their mean values depend on hypotheses, 

This is the general Gaussian problem with equal IKi / for all i and also KT' = 21, 
where Ki is defined in (B.14). When the criterion is minimum error p-obab%y, 
using (B. 15) and dropping the term $ In JKi 1 which is independent of any hypothesis, 
we have this sufficient statistic 

and determine H j  is true when 1; is the largest. Expanding the above we have 

The term EL, T: is independent of any hypothesis, which can be dropped. From 

* In many cases the signal set is in the form of linear combinations of orthonormal functions 
already, such as MPSK, QAM, and M-ary PAM, then the Gram-Schmidt procedure is unnecessary. 
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Parseval's theorem 
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Thus the new suficient statistic is 

where the bias term 

The detection rule is to choose the largest of l j .  The receiver is shown in Figure 
B.6. Its matched filter equivalence is shown in Figure B.7. It is worthwhile to point 
out that the decision rule of (B.38) does not require that the M signals are orthogonal. 
When signals are equally likely and have the same energy, then the bias term in Zj 
can be dropped. 

If N < hl, the optimum receiver can be implemented using N correlators [4, pp. 

185- I 861. This is due to the fact [ I ,  p. 1691 

Then 

where sij are known. Thus the receiver only needs to compute ri using N correlators 
and weight the output with the signal coefficients sij to form the correlation (Figure 
B.8). The matched filter equivalence is shown in Figure B.9. 
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Ifli > $ 
for all 
j # i, 

choose Hi 

Figure B.6 Coherent M-ary detector using A l  correlators. 

Sample at 
t = T  B1 

~s,(T-1)~-/+&{ Sample at 

If I ,  > lj 
for all 
j # i, 

choose H i  0 

Sample at 
t = T  

Figure B.7 Coherent M-ary detector using hl matched filters. 
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Weighting 
Matrix 

bij I 

If Zi > Zj  
for all 
j z i, 

choose Hi 

Figure B.8 Coherent M-ary detector using N correlators. 

Sample at 
t = T  

Ifl; > I ,  
for all 
j # i, 

Figure B.9 Coherent M-ary detector using N matched filters. 
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8.2.2.2 Error Probability 

Now we will derive the error probability of this important receiver for the symmet- 
rical case: M signals are orthogonal to each other, each signal has the same symbol 
energy and a priori probability. That is, Pj = P and Ej = Es for all j. In this case 
the bias term in (B.38) can be dropped and 

Since the problem is symmetrical we can assume that H1 is true. An error occurs if 
lj > 11, j #  1.  

Because of symmetry, the average symbol error probability is equal to the above 
probability. Note that the l j  ( j  # 1) have the same density conditioned on H I ,  and 
also independent of each other. Thus 

- - 1 - 

To find the densities of l 1  and 1 under hypothesis H I ,  we note that 

where n is a Gaussian random variable with zero mean and a variance FE,  (see 
(8.26)). 

Thus the densities are 
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and 
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Substituting these densities into (B.41) and normalizing the variables we obtain 

(for orthogonal equal energy signal set) (B.42) 

This expression cannot be analytically integrated. However, we can derive a very 
simple bound. In order to obtain a bound for more general cases, we assume the 
signal set is not symmetrical. Then we replace l1 in B.40 with li and rewrite the P, 
as 

Now several l j  can be greater than li. The events are not mutually exclusive. Thus 

where each term in the sum is just the probability of error for two signals, which can 
be written in terms of their Euclidean distance as in (B.32). Thus 

where 

For an orthogonal and equal energv signal set, all distances between any two 
signals are equal. The distance d = d m ,  thus (B.43) becomes 

(for equal energy and orthogonal signal set) 



For fixed A 1  this bound becomes increasingly tight as Es/iVo is increased. In fact, 
it becomes a good approximation for P, 5 For ill = 2, it becomes the exact 
expression. 

B.3 DETECTION OF CONTINUOUS SIGNALS WITH UNKNOWN 
PHASES 

In the above discussion of detection of M-ary signals (binary signal is just a special 
case), we have made a fundamental assumption: the signal phases are known to the 
receiver. This requires that the receiver has the mechanism to track the carrier phase 
so that the local reference signal phase is synchronized with that of the received sig- 
nal. This is called coherent detection which is optimum in an AWGN channel. In 
practical channels, such as fading channels, multipath channels, the received signal 
phase is very difficult or even impossible to track. Thus the detection process may 
have to disregard the phase information to avoid complex circuits, at some expenses 
of performance degradation. This is called noncoherent detection. When the re- 
ceived signal phase is not tracked by the receiver, the signal phase is unknown to the 
receiver. The results of this section can by applied to binary and M-ary noncoherent 
FSK and DPSK. 

B.3.1 Receiver Structure 

Assume hi! hypotheses with priori probabilities Pi = Pr(HJ, the received signal 
under hypothesis Hi is 

where si(t, 0) is the signal with an unknown phase 8 and n( t )  is the white Gaussian 
noise with zero mean and a PSD of No/2.  We assume the unknown phase is random 
with a PDF pe(8). 

The procedure of deriving the optimum receiver for M-ary signals with unknown 
phases is similar to that of the known signals. First we use the Gram-Schmidt pro- 
cedure to find a set of orthonormal basis functions and expand r ( t )  onto these ba- 
sis functions. The resultant vector r will be used to form the likelihood function 
p( r /Hi ) .  The decision rule for minimum error probability criterion is to compute Pi 
p(r/Hi) and choose the largest. The only new feature here is that the signal phase 
is random. Therefore the likelihood function is conditioned on the random phase 8, 
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and the unconditional likelihood is 

Because components of r are independent Gaussian variables with equal vari- 
ance, therefore (Kil are all equal for all i, and in addition KC' = 21, I is the 

No 
identity matrix. Thus the likelihood of (B. 13) can be denoted simply as 

1 N where K and Kt are constants. The term exp[- Cjz1 r;] is common to all hy- 
potheses, thus is included in the constant K t .  The two sum terms in the exponent 
can be written as two integrals by using Parseval's theorem as we did From (B.37) 
through (B.38). Thus 

The unconditional likelihood is 

Now we assume that 0 is uniformly distributed on [O, 2x1, that is 

The decision rule is to maximize Pip(r/Hi)  over all i. From above it is seen that 
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this is to maximize 

T where Ei = So $(t ,  B)dt is the energy of the ith signal. Now we assume that si(t) 
is the carrier-modulated signal, that is, 

where Ai ( t )  is the amplitude modulation and cp, (t)  is the phase modulation. If the 
signal is frequency modulated, we can embed it into the phase modulation term. The 
received signal with unknown phase will be 

Thus (B.49) can be written as 

Now we define 

and 
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where 
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si ( t .  i) = Ai ( t )  sin[% fct + pi(t)] 

Then (B.50) becomes 

2x 1 
pie- 2 Jo 271 exp (2 [rci cos 8 - zSi sin 81 

N, 

where 

and 

The integral in (B.52) is related to the zeroth-order modified Bessel function defined 
as 

- exp[x cos(8 + 6)]d0, 6 is any constant .(x, = S,'" 
By using this function (B.52) can be written as 

Taking the logarithm we can equivalently state the rule as maximizing 

Because for fixed Ei/No,  In(-) and lo(-) both are monotonic functions, this is to 
maximize 

a 2zi l i = - -  
No 

Figure B. 10 is the receiver realizing the 
matched filter-envelope detector version. 

above decision rule. Figure B. 11 is the 
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Figure B. 10 Optimum detector for M-ary signals with unknown phases: correlator form. 

If we further assume that the signals are equally likely and have the same en- 
ergy, which is common in noncoherent communications, then the decision rule is to 
maximize Zi or z?: 

The block diagram is shown in Figure B. 12. Note that the two reference signals 
si ( t )  and si ( t ,  ;) are orthogonal. Figure B. 13 is the matched filter-envelope detector 
version, where 

Proof The output of the matched filter is 
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Figure B. 11 Optimum detector for M-ary signals with unknown phases: matched fhter form. 

Substituting the expression of  s i ( r )  into the above equation we have 
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The envelope at t = T is 

which is exactly the output of the correlator version. 

B.3.2 Receiver Error Performance 

B.3 -2.1 Binary Orthogonal Signals 

We first derive the symbol error probability P, = Pb for the binary case. Then the 
results can be easily extended to the M-ary case. 

The noncoherent receiver for binary signals is symmetrical in structure. The 
error probability of choosing sl ( t )  when s z ( t )  is actually transmitted is the same as 
that of choosing s 2 ( t )  when sl ( t )  is actually transmitted. For equally likely signals 
the average Pb is equal to either one of these two probabilities. Therefore in the 
following analysis we assume that sl (t) is transmitted. 

Note that the receiver in Figure B. 10 or Figure B. 1 1  is for any signal sets with 
equal energy, equal a priori probability; orthogonality is not required. Here we fur- 
ther assume that the two signals are orthogonnl. This is due to the fact that binary 
orthogonal signals have the smallest error probability among the class of binary sig- 
nals with constrained peak energy and unknown phase [s]. 

Since sl (t) is orthogonal to s z ( t )  (also to s z ( t ,  5) ) the integrator outputs z,, 
and r,, are Gaussian random variables with zero mean and a variance of rr2 = % E, 
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Figure B. 12 Correlator receiver for M-ary signals with unknown phases. Signals are equally likely and 
with equal energy. 

(refer to (B.26)). z,, and z,, are independent of each other since s i ( t )  and si( t ,  ;) 
are orthogonal [I]. l z  = ,/-. It is well known that the PDF of the root-sum 
square of two independent Gaussian random variables is Rayleigh. That is 

z,, and r,, are also independent Gaussian random variables with the same vari- 
ance, but their mean values are ,u = Es = Eb. The PDF of Il = ,/-is the 
well-known Rician distribution 
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Sample at 
r = T 

Same as above except 
for s2(t) 

Same as above except j r', 
for s d t )  - 

I 

1f ti > /, 
for all 
j # i, 

choose Hi 

Figure B. 13 Matched-filter receiver for M-ary signals with unknown phases. Signals are equally likely 
and with equal energy. 

The probability of error, given that sl ( t )  is sent, is 

The random variables 1 1 ,  Z2 are independent because their noise parts are indepen- 
dent, which in turn follows the orthogonality of the two signals. Therefore 
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Combine the exponents, let y = f i l l  and = p/fi, the above integration can be 
written as 

where the integration is one since the integrand is exactly the Rician density. We 
have already stated that this error probability is equal to the average symbol error 
probability which in binary case is also the bit error probability. Substituting values of 
p and o2 into the above expression, we have the bit error probability for noncoherent 
detection of binary orthogonal signals in an AWGN channel as 

B.3.2.2 M-ary Orthogonal Signals 

For M-ary signals, the noncoherent receiver will produce A3 sufficient statistics: 
li, i = 1 ,2 ,  , M. The decision device will compare them and choose the largest. 
We again assume that sl ( t )  is transmitted. With M-ary orthogonal signals, 1 will be 
Rician and the rest will be Rayleigh. All li are independent. Again due to symmetry 
of the problem the symbol error probability will be the same as the error probability 
of losing detection of sl ( t )  when it is sent. 

where P(c/H1 ) is the probability of correct detection. If we fix 1 1 ,  the conditional 
probability is 

= [ 1 - e  -1; /20z1 Al-1  
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Now averaging this over the Rician distribution of 11,  we have 

Expanding the term raised to power M - 1 by binomial theorem and integrating tern 
by term, we obtain the symbol error probability of noncoherent detection for M-ary 
orthogonal signals as 

M-1 where ( ) is the binomial coefficient, defined by 

The 

For 

leading term of (B.57) provides an upper bound as 

fixed M this bound becomes increasingly close to the actual value of P, as 
E,/N, is increased. In fact when M = 2, the upper bound becomes the exact 
expression. 
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ac 
ACI 
ACTS 
A D  
ADC 
AM 
AMF 
AM1 
AMI-NRZ 
AMI-RZ 
AMPS 
ASK 
AT&T 
AWGN 
BER 
Bi-@-L 
Bi-#-M 
Bi-@-S 
BFSK 
BNZS 
BPF 
BPSK 
CCI 
CCITT 

C/D 
CDPD 
CHDB 
C/I 

alternate current 
adjacent c hamel interference 
Advanced Communications Technology Satellite (of NASA) 
analog-to-digital (converter) 
analog-to-digital converter 
amplitude modulation 
average matched filter 
alternative mark inversion 
alternative mark inversion-nometurn-to-zero 
alternative mark inversion-return-to-zero 
advance mobile phone service 
amplitude shift keying 
American Telephone and Telegraph 
additive white Gaussian noise 
bit error rate 
biphase level 
biphase mark 
biphase space 
binary frequency shift keying 
binary n zero substitution 
bandpass filter 
binary phase shift keying 
co-channel interference 
Consultative Committee for International Telephone and 
Telegraph 
power ratio between the main-path signal and the delayed signal 
cellular digital packet data (system) 
compatible high density bipolar 
carrier-to-interference ratio 
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CMI 
C/N 
CPFSK 
CPM 
CR 
CSMA/CD 
D/A 
DAC 
dB 
DBPSK 

dc 
DDCR 
DEBPSK 

DEMPSK 
DEQPSK 
DM 
DmBlM 
DM1 
DMPSK 
DMSK 
DPSK 

DQPSK 
DS 
DSFSK 
DSV 
ETACS 
FDM 
FFSK 
FIR 
FM 
FSK 
GMSK 
GSM 
HDB 
HF 
Hz 
IBM 
IF 

coded mark inversion 
carrier-to-noise ratio 
continuous phase frequency.shift keying 
continuous phase modulation 
carrier recovery 
carrier sense multiple access/collision detection 
digital-to-analog (converter) 
digital-to-analog converter 
decibel 
differential binary phase shift keying (differentially encoded and 
differentially demodulated binary phase shift keying) 
direct current 
decision-directed carrier recovery 
differentially encoded binary phase shift keying (demodulation 
may not be differential) 
differentially encoded M-ary phase shift keying 
differentially encoded quadrature phase shift keying 
delay modulation 
differential m binary with I mark inversion 
differential mode inversion 
differential M-ary phase shift keying 
duobinary minimum shift keying 
differential phase shift keying (usually it refers to DBPSK, but 
can be used as a generic name for all differential phase shift 
keying schemes) 
differential quadrature phase shift keying 
digital sum 
double sinusoidal frequency shift keying 
digital sum variation 
European total access communication system 
frequency division multiplexing 
fast frequency shift keying 
finite impulse response (filter) 
frequency rnodulat ion 
frequency shift keying 
Gaussian minimum shift keying 
global system for mobile communication 
high density bipolar 
high frequency 
Hertz 
International Business Machines (Corporation) 
intermediate frequency 
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IJF-OQPSK 
IPC 
ISD 
IS1 
LCE-MH 
LO 
LOS 
LPF 
LRC 
LREC 
LSRC 
MAM 
MAP 
MASK 
MFSK 
MHPM 
ML 
MLSD 
MLSE 
MPSK 
MQORC 
MSK 
NASA 
NCO 
NRZ 
NRZ-L 
NRZ-M 
NRZ-S 
OOK 
OQPSK 
PAM 
PCM 
PDF 
d4-QPSK 
PFDmB(m+ l)B 
PLL 
PPM 
PSAM 
PSD 
PSK 
PT 
Q A M 

intersymbol-interferenceljitter-free OQPSK 
inner product calculator 
integrate-sample-dump (circuit) 
intersymbol interference 
multi-h signal with a depth of correlation of L 
local oscillator 
line of sight 
low-pass filter 
raised cosine pulse of length L 
rectangular pulse of length L 
spectrally raised cosine pulse of length L 
M-ary amplitude modulation 
maximum a posteriori probability 
M-ary amplitude shift keying 
M-ary frequency shift keying 
multi-h phase modulation 
maximum likelihood 
maximum likelihood sequence detection 
maximum likelihood sequence estimation 
M-ary phase shift keying 
modifed quadrature overlapped raised-cosine (modulation) 
minimum shift keying 
National Aeronautics and Space Administration 
numerically-controlled oscillator 
nonreturn-to-zero 
nonreturn-to-zero-level 
nonreturn-to-zero-mark 
nonreturn-to-zero-space 
binary on-off keying (binary ASK) 
offset quadrature phase shift keying 
pulse amplitude modulation 
pulse code modulation 
probability density function 
n/4 quadrature phase shift keying 
Partially-flipped differential m bits with (m+l)th check bit 
phase lock loop 
pulse position modulation 
pilot symbol assisted modulation 
power spectral density 
phase shifi keying 
pseudoternary 
quadrature amplitude modulation 
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QBL 
QORC 
QOSRC 
QPSK 
Q'PSK 
RCA 
RC-QPSK 
ROM 
RZ 
SFSK 
SHPM 
SMSK 
SNR 
SQAM 
SQORC 
TFM 
TSI-OQPSK 
TTIB 
TWTA 
USDC 
VA 
VCO 
WSS 
XPSK 

quasi-bandlimited (modulation) 
quadrature overlapped raised cosine (modulation) 
quadrature overlapped squared raised cosine (modulation) 
quadrature phase shift keying 
quadrature quadrature phase shift keying 
Radio Corporation of America 
raised-cosine quadrature phase shift keying 
read only memory 
return to zero 
sinusoidal frequency shift keying 
single-h phase modulation 
serial minimum shift keying 
signal-to-noise ratio 
superposed quadrature amplitude modulation 
staggered quadrature overlapped raised cosine (modulation) 
tamed frequency shift keying 
two-symbol-interval offset quadrature phase shift keying 
transparent tone in band 
traveling wave tube amplifier 
United States digital cellular (system) 
Viterbi algorithm 
voltage-controlled oscillator 
wide sense stationary 
cross-correlated quadrature phase shift keying 
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Autocorrelation function (continued)
AWGN, 4
calculating, 274  
of complex envelope, 571  
Fourier transform of, 571-72  
periodic part, 275  
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Average bit error probability, 605-6  
Average matched filter (AMF) receiver, 334  
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Bandlimited channel, 6  
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Bazin's symbol-shaping pulses (continued)
defined, 250-53  
frequency-shaping, 254  
illustrated, 254  
PSDs, 254  
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See also Symbol-shaping pulses  

Bessel function, 305  
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BER, 46-49  
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coherent, 128  
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null-to-null bandwidth, 204  
PSD, 127-29  
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efficiency, 62-63  
kBnT, 78-81  
mB1C, 74-76  
mBnB, 71-74  
nonalphabetic, 62  
PFmB(m+1)B, 77-78  
See also Line codes  
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BPF-limiter modulator, 294-95  
Butterworth filter, 505-6, 511, 513, 559-60  

C  
 Carrier-modulated signal, 617  
 Carrier recovery, 179-83  

Costas loop, 182  
decision-directed (DDCR), 441  
MSK-type synchronizer, 339  
Mth power synchronizer for, 180  
phase ambiguity, 215  
QAM, 441-42  
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times-four, 445  
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in 4-ary multi-h CPFSK, 394  
circular QAM and, 441  
in M-ary multi-h CPFSK, 393-98  
MSK-type, 399  
in multi-h CPFSK, 388-92  
square QAM, 441  

Carter code, 71-72  
Circular QAM, 441  
Clock recovery, 183-85  
closed-loop synthesizer, 183  
early/late-gate synthesizer, 185  
groups, 183  
open-loop synchronizer, 183  

Closed-loop synthesizer, 183  
Coded mark inversion (CMI) codes, 63-69  

average bit error probability, 67  
BER, 66-69  
correlations and spectrum, 65  
decision space, 67  
defined, 63  
edge-detected, BER, 69  
signal format, 64  
spectrum calculation, 64-66  
transition density, 63  
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Coherence bandwidth, 518-20  
Coherence time, 520-21  
Coherent detection, 615  
Coherent FSK, 88-89  

demodulation, 95-98  
demodulator: matched filter implementation, 97  
demodulator: one correlator implementation, 96  
demodulator; correlator implementation, 96  
modulator, 89  
waveform, 90-91  
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Coherent FSK (continued)
See also Frequency shift keying (FSK)  

Communication channels, 4-7  
AWGN, 4-6  
bandlimited, 6  
fading, 7, 516-64  
LOS, 6  

Compatible high density bipolar n (CHDBn), 60  
Complex envelope  

autocorrelation function, 571  
defining, 568  
MPSK, 146-47  
Q2PSK, 501  

Constant envelope Q2PSK  
bit error probabilities, 511  
demodulator, 510  
obtaining, 508  
synchronization scheme, 513  

Constraint length, 360  
Continuous phase FSK (CPFSK), 13, 92

4-ary noncoherent, comparison, 309
8-ary, simulated, 318
8-ary noncoherent, comparison, 310
binary coherent, comparison, 302
binary noncoherent, comparison, 308
defined, 91
differential and discriminator demodulator, 330-33
K-index, 397
M-ary multi-h, 393-98
MSK viewed as special case of, 201-3
multi-h schemes, 351
octal coherent, comparison, 304
phase trellis, 355-56, 358-59
PSD, 277-79
quaternary coherent, comparison, 303
signal form, 91
spectral expression, 93
See also Frequency shift keying (FSK)

Continuous phase modulation (CPM), 11, 259-347
binary partial response, 330
constant envelope, 15
CPFSK, 261-62
cumulate phase, 267, 268
defined, 259
demodulators, 297-337
description, 260-72
discrete frequency components, 339
distance property, 317
error probability, 259, 281-85
excess phase, 265-67
eye pattern, 331
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Continuous phase modulation (CPM) (continued)
frequency pulses, 15
full-response, 271
GMSK, 263-64
inevitable merge, 284
information bearing phase, 268
initial phase, 267
instant phase, 265-67
LRC, 262
LREC, 261-62
LSRC, 262
minimum distance comparison, 285-86
MLSD, 279-81
modulating pulse shapes, 261-64
modulation index effect, 276-77
modulator, 286-97
MSK, 261
MSK-type demodulator, 326-30
noncoherent, ML block detection, 325-26
optimum ML coherent demodulator, 297-301
optimum ML noncoherent demodulator, 301-11
parallel MSK-type receiver for, 329
phase tree, 269-70
phase trellis, 270, 271
power-bandwidth trade-off, 289
a priori distributions, 277
PSD calculation, 274-76
PSD illustrations, 277
PSDs, 272-79, 580-86
pulse shape effect, 276
quaternary, PSDs for, 278
schemes, 13, 259
signal, 260
signal definition, 580
signal phase, 265
signal state, 267-69
SMSK receiver for, 330, 331
state trellis, 270-72
state vector, 271
synchronization, 337-42
TFM, 263
Viterbi demodulator, 311-20

Continuous signal detection (unknown phases), 615-25
error performance, 621-25
receiver structure, 615-21

Continuous signal detection, 596-615
Conversion filter transfer function, 223
Correlation coefficient, 44, 597
Correlatively encoded multi-h signaling technique, 401-3

defined, 401-2
signal comparison, 403
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Correlatively encoded multi-h signaling technique (continued)
signal definition, 402

Costas loop, 182-83
for BPSK, 182
for GMSK, 344
for QPSK, 182, 183
for SMSK, 234

Covariance matrixes, 599
Crosscorrelated QPSK (XPSK), 13, 460

D
Data detection, 392-93

Decision criteria, 590-94
Bayes criterion, 590-92
MAP criterion, 593
maximum likelihood criterion, 594
minimum probability of error criterion, 592-93

Decision-directed carrier recovery (DDCR), 441
for 200Mbps square 16-QAM, 445
advantage, 445
implementation, 449
quantity distribution, 448

Decision-directed demodulator, 388
Decision space, 605
Delay modulation (DM), 27, 82

bandwidth, 43
BER, 57
matrices, 42
PSD, 40-43
PSD illustration, 33

Delay spread
defined, 518
four-level modulations and, 537
rms, 542, 543

Demodulation
pi/4-QPSK, 172-73
BPSK, 126
coherent FSK, 95-98
DEQPSK, 166
digital communication system model for, 3
with discriminator, 115-20
joint, 388-92
with limiter-discriminator detection, 120
MFSK, 104-15
MSK, 211, 224, 225, 228
multi-h binary CPFSK, 383
noncoherent FSK, 98-101

Demodulators
pi/4-QPSK

baseband differential, 174
coherent, 177, 178
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Demodulators (continued)
pi/4-QPSK

FM-discriminator, 174, 176
IF band differential, 174

BFSK, 118
BPSK, 126, 224, 225
coherent FSK

correlator implementation, 96
matched filter implementation, 97
one correlator implementation, 96

CPM, 297-337
DBPSK, 131, 134
decision-directed, 388
differential, 330
differential QPSK, 161, 165
discriminator, 330-33
DMPSK, 152, 153
GMSK, 343
MAM, 418-21
MFSK, 104, 108, 109, 110, 113
MHPM, 382-92
MPSK, 141
MSK, 210-14
MSK-type, 235, 326-30
noncoherent FSK

bandpass filter implementation, 100
correlator implementation, 99
matched filter implementation, 99

noncoherent MFSK, 110
correlator-squarer implementation, 113
matched filter-envelope detector implementation, 115
matched filter-squarer detector implementation, 114

optimum ML coherent, 297-301
optimum ML noncoherent, 301-11
OQPSK-type, 459
post-separation, 461-62
Q2PSK, 503-5
QAM, 436-38
QPSK, 156, 158, 159
SFSK, 240
SMSK, 220, 223-27
SQAM, 494
synchronization, 398-99
two-symbol-period schemes, 461-62
Viterbi, 311-20

Detection of signals, 589-625
binary, 596-608
coherent, 615
continuous, 596-615
continuous, with unknown phases, 615-25
discrete, 589-96
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Detection of signals (continued)
M-ary, 608-15
noncoherent, 615
theory, 597

Dicodes
bandwidth, 37
BER, 53-54
decoding, 26
NRZ, 26
PSD, 36
RZ, 26
See also Bandwidth

Difference data sequence, 282
Difference signal, 604
Differential BPSK (DBPSK), 129-36

bit error probability, 134, 136
demodulator, 131
encoded (DEBPSK), 129-36
integrator output, 129
modulator, 131
optimum demodulator, 134
PSD, 135, 136
receiver implementation, 132
in Rician fading channel, 534
symbols, 133
See also Binary PSK (BPSK)

Differential coding, 18-22, 24
data distribution, 20
decoding, 22
decoding rule, 18
defined, 18
DEQPSK, 163
encoding, 18-21
examples, 19, 132
performing, 18
phase ambiguity and, 180
QAM, 448-54
star QAM, 558
types, 21

Differential encoder/decoder, 20, 21
Differential mode inversion (DMI) codes, 69-71

bipolar, 70
defined, 69-70
unipolar, 71
waveform, 64
See also Block codes

Differential MPSK (DMPSK), 148-54
coherent demodulator, 152, 153
defined, 148
encoded (DEMPSK), 148, 153
PSD, 153-54
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Differential MPSK (DMPSK) (continued)
symbol error probability, 152-53
See also M-ary PSK (MPSK)

Differential QPSK, 160-67
bit error probability, 164
coding rules, 160
coherent demodulation, 166
demodulator, 161
differential coding, 163
differential decoding, 167
differentially encoded (DEQPSK), 161, 163, 166-67
modulator, 163
Pb of, 161
signal phase assignment, 163
suboptimum demodulator, 165
symbol error probability, 166-67
See also Quadrature phase shift keying (QPSK)

Digital bandpass signals PSDs, 577-79
Digital communication systems, 1-4

block diagram, 2
modulation/demodulation model, 3

Digital signal PSDs, 572-77
data symbols are correlated, 576-77
data symbols are uncorrelated, 574-76

Digital sum (DS)
defined, 62
variation (DSV), 62, 78

Digital-to-analog (D/A) converter, 2
Dirac delta function, 4
Discrete signal detection, 589-96

binary hypothesis test, 589-90
decision criteria, 590-94
M hypotheses, 594-96
See also Detection of signals

Discriminator demodulator, 330-33
filter, 333
illustrated, 334
output, 330-33
sequence detection, 333
Viterbi processing, 333
See also Demodulators

Diversity branches, 563
Diversity techniques, 561-63

angle, 562
defined, 561
frequency, 562
multipath, 562
polarization, 562
space, 561-62
time, 562
transform, 562-63



645

DmB1M codes, 76-77
consecutive identical digits, 77
defined, 76
See also Block codes

Doppler shift, 7, 133
effects, 517
Rayleigh fading and, 551

Doppler spread
defined, 520
maximum, 545

Double SFSK (DSFSK), 253, 254
Duobinary MSK (DMSK), 262

E
Early/late-gate clock synthesizer, 185
Equalization, 563
Equivalent noise bandwidth, 118
Erasure, 590
Error function, 142

complementary, 145
defined, 142, 191
properties, 192

Error probability
pi/4-QPSK, 176-77, 179
binary signal, 603-8
BNZS code, 59
BPSK, 127
continuous signals with unknown phases, 621-25
CPM, 259, 281-85
DBPSK, 134, 136
DMPSK, 152-53
DQPSK, 164, 166-67
line codes, 24
MAM, 414-18
M-ary signal, 613-15
MFSK, 113-14
minimum, 46, 49, 592-93, 595
MPSK, 140
MSK, 216-19
OOK, 422
optimum ML demodulator, 299, 301, 306
optimum receiver, 603-8
PAM, 414, 416
PMSK, 330, 332
Q2PSK, 503, 505, 511
QAM, 438-41
QBL, 470
QORC, 476
QOSRC, 477
QPSK, 159
SMSK, 330, 332
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Error probability (continued)
SQAM, 496-98
SQORC, 476
square QAM, 438-39, 440, 452
TSI-OQPSK, 485
two-symbol-period schemes, 464, 465
Viterbi demodulator, 317

Excess delay spread, 518
Excess phase, 260

F
Fading

defined, 517
envelope distributions, 524-27
remedial measures against, 560-63

Fading channels, 517-64
pi/4-DQPSK, 517, 544-48
amplitude fluctuations, 7
characteristics, 518-21
classification, 521-23
classification table, 523
coherence bandwidth, 518-20
coherence time, 520-21
combinations, 523
defined, 7
delay spread, 518
Doppler spread, 520
fast, 522
flat, 521
frequency selective, 521-22, 533-44
QAM in, 554-60
Rayleigh, 527-31
Rician, 531-33
slow, 522-23
slow, flat, 527-33

Fano algorithm, 334
Fast fading channel, 522
Flat fading channel, 521
Fourth-power loop synchronizer, 340-41, 444

defined, 340
illustrated, 341

Fractional out-of-band power, 206
Frequency diversity, 562
Frequency selective channel, 533-44

BER, 533
defined, 521-22
digital modulation in, 533-44
See also Fading channels

Frequency shape pulse, 260
Frequency shift keying (FSK), 8, 87-122

binary, 12
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Frequency shift keying (FSK) (continued)
coherent, 88-89, 90-91
coherent demodulation, 95-98
continuous phase, 91-92
defined, 8-9
demodulation using discriminator, 115-20
generic, 12
noncoherent, 87-88, 98-101
PSD, 92-94
schemes, 13
summary, 121-22
symbol timing, 121
synchronization, 121

G
Gaussian MSK (GMSK), 13, 15, 195, 256, 342-46

BER, 345, 532
in CDPD systems, 259
Costas loop, 344
defined, 263, 342
degradation, 345
demodulator, 343
frequency pulse, 342
illustrated, 264
irreducible BER performance for, 542
modulator, 342-43
percentage bandwidth, 342
PSD, 342, 343
in Rician fading channel, 536
transfer function, 342

Gaussian probability function, 5
Gaussian random variables, 599, 604, 605, 613, 622
Gram-Schmidt procedure, 385, 406, 598, 608, 615
Gray coding, 137-38

imperfect, 452
square QAM, 434, 435, 452

Griffiths code, 72-73
3B4B translation table, 74
5B6B translation table, 73
defined, 72
See also mBnB codes

H
High density bipolar n (HDBn) codes, 60-62

commonly used, 62
compatible (CHDBn), 60
defined, 60-62
See also Substitution line codes

Hypotheses
a priori probabilities, 591
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Hypotheses (continued)
decision criteria, 590-94
defined, 589
M, 594-96
mapping, 589
vector, 595-96

I
IF filters, 119
Inner product calculator (IPC), 388, 391
Intersymbol interference (ISI), 6, 17-18, 227
Intersymbol-interference/jitter-free OQPSK (IJF-OQPSK), 13, 478-90

defined, 478
out-of-band to total power ratio, 493
signaling illustration, 479

Intersymbol-interference/jitter-free OQPSK (IJF-OQPSK) See also Offset QPSK

J
Joint carrier phase tracking, 392-93
Joint demodulation, 388-92

4-ary multi-h CPFSK, 394
M-ary multi-h CPFSK, 393-98

K
kBnT codes, 78-81

4B3T, 79-80
6B4T, 80-81
MS43, 80
defined, 78
efficiencies, 78

L
LCE-MH, 402
L-fold rotational symmetry, 450
Likelihood ratio, 592
Limiter-discriminator detection, 115-18, 120
Line codes, 17

AMI, 26
bandwidth, 22-24
BER of, 43-57
biphase codes, 22, 27, 37-40, 54-57
bit sequence independence, 24
block, 22, 62-81
classes, 22
delay modulation, 27, 40-43, 57
description of, 22-27
differential coding, 24
error detection capability, 24
error probability, 24
features, 22-24
illustrated, 23
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Line codes (continued)
NRZ, 22, 25, 30-34, 46-48
PSD of, 28-43
pseudoternary codes, 26, 35-37, 49-54
PT, 22
RZ, 22, 25-26, 34-35, 48-49
spectrum, 22
substitution, 22, 57-62
timing information, 22

Line-of-sight (LOS) channels, 6
Loop transfer function, 181

M
Manchester codes, 82

BER, 54
defined, 27
efficiency, 63
PSD, 37
See also Biphase codes

MAP
criterion, 593
symbol synchronizer, 341-42

MAP-VA receiver, 392, 393
Marcum's Q-function, 606
Markov method, 272
M-ary amplitude modulation (MAM), 411-22

amplitudes, 412
bandpass, 413, 416, 418-21
baseband, 416
behavior, 411
demodulator, 418-21
error probability, 414-18
modulator, 418-21
MPSK inferiority, 416-18
on-off keying, 421-22
optimum detection, 414-18
passband, 412
power efficiency, 411
power penalty, 418
PSD, 412-14
signals, 412
symbol error probability, 417

M-ary ASK (MASK), 13
M-ary FSK (MFSK), 13, 102-15

coherent demodulator, 104, 108, 109
coherent modulator, 108
defined, 102
equal-energy, 110, 111, 112, 116, 117
equiprobable, 110, 111, 112, 116, 117
for equiprobable messages, 102-3
frequency separation, 102
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M-ary FSK (MFSK) (continued)
noncoherent demodulator, 110, 113
noncoherent modulator, 104-7
for non-equiprobable messages, 103
orthogonal, 110, 111, 112, 116, 117
PSD, 103-4
PSD illustration, 104, 105, 106
signal, 102
symbol error probability, 113-14
See also Frequency shift keying (FSK)

M-ary multi-h CPFSK, 393-98
carrier synchronization, 393-98
joint modulation, 393
phase trellis, 393
symbol synchronization, 393-98

M-ary PSK(MPSK), 13, 136-48
bit rate, 147-48
coherent demodulation, 139
coherent demodulator using two correlators, 141
complex envelope, 146-47
decision regions, 146
differential (DMPSK), 148-54
Gray coded, 145
linear PSD, 149
logarithmic PSD, 149
MAM inferiority to, 416-18
maximum bandwidth efficiency, 148
modulator, 138-39
out-of-band power PSD, 149
PSD, 146-48
QAM superiority to, 418, 439
schemes, 136
signal constellation, 137
signal set, 136-37
symbol error probability, 140
symbol rate, 147
two-dimensional signals, 138

M-ary signal detection, 608-15
coherent receiver for, 622
error probability, 613-15
matched-filter receiver for, 623
with M correlators, 611
with M matched filters, 611
with N correlators, 612
with N matched filters, 612
optimum, 619, 620
orthogonal, 624-25
receiver structure, 608-12
See also Detection of signals

Matched filters, 396
coherent QAM demodulator using, 437
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Matched filters (continued)
equivalence, 610
frequency response, 229
low-pass equivalent, 227, 231
maximizes SNR, 602-3
receiver, 244
theory, 226
total response, 231

Maximum likelihood block detection
error performance, 326
illustrated, 326
noncoherent CPM, 325-26
real I-Q implementation, 327

Maximum likelihood criterion, 594
Maximum likelihood sequence detection (MLSD)
for CPM, 279-81

defined, 280
demodulator use of, 280
error performance, 280, 281-85
receiver, 281, 311
with Viterbi algorithm, 285

Maximum likelihood sequence estimation (MLSE), 314
mB1C codes, 74-76

defined, 76
scrambling, 76
spectral, 76
See also Block codes

mBnB codes, 71-74
2B3B dc-constrained code, 74, 75
Carter code, 71-72
defined, 71
Griffiths code, 72-73
PAM-PPM code, 73-74, 75
See also Block codes

Mean excess delay, 518
Metrics

branch, 312, 387-88, 389
defined, 312
path, 312
M hypotheses, 594-96

Miller code See also Delay modulation (DM)
Minimum error probability, 49

criterion, 592-93
test, 595

Minimum shift keying (MSK), 13, 195-257
bandwidth, 204-7
bit energy, 217
bit error probability, 219
bit error rate, 216
carrier and symbol-timing recovery, 214
carrier phase, 198
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Minimum shift keying (MSK) (continued)
composite signal, 196
continuous phase, 90
demodulation, 211, 224, 225, 228
demodulator, 210-14
derivation, 195
description of, 196-203
duobinary (DMSK), 262
error performance, 256
error probability, 216-19
excess phase, 198, 200
FFSK implementation, 215
fractional out-of-band power, 206
LHS, 199, 200
main lobe spectrum, 204
ML block estimator implementation, 325-26
modulator, 207-10
modulator illustration, 207, 208, 209
with multiple-symbol noncoherent detection, 328
noncoherent demodulation, 214
null-to-null bandwidth, 204
optimum coherent demodulation, 211
out-of-band to total power ratio, 493
parallel (PMSK), 222, 223, 326
phase tree, 200, 201
phase trellis, 201, 202
properties, 196-98
PSD, 203-4
PSD illustration, 205
RHS, 199, 200
Rician channel, 535, 554
schemes, 195
serial (SMSK), 219-31, 326
as set of time/phase-shifted AM pulses, 333
as sinusoidal weighted OQPSK, 196-201
as special case of CPFSK, 201-3
spectrum fall-off rate, 204, 205
symbol, 226
symbol shaping pulses, 204
synchronization, 214-15
waveforms, 196, 197
See also Frequency shift keying (FSK)

Modified QORC (MQORC), 459
Modulation, 7-15

pi/4-QPSK, 12, 13, 170-79
ASK, 8, 13, 15
AWGN, 6
bandwidth efficiency, 10-11
baseband, 8, 17-83
basic, 12
BFSK, 13
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Modulation (continued)
BPSK, 9, 13, 123-29
choice criteria, 9-12
classes, 12
CPFSK, 13
CPM, 11, 13, 15, 259-347
digital communication system model for, 3
in fading channels, 517-64
FSK, 8-9, 13, 87-122
GMSK, 13, 195, 256, 263, 342-46
IJF-OQPSK, 13, 478-90
LRC, 13, 262
LREC, 13, 261-62
LSRC, 13, 262
MAM, 411-22
MASK, 13
MFSK, 13, 102-15
MHPM, 13, 15, 351-408
MPSK, 13, 136-48
MQORC, 459
MSK, 13, 195-257
nonconstant-envelope bandwidth-efficient, 459-515
NRZ-L, 7-8
OOK, 8, 13, 421-22
OQPSK, 13
power efficiency, 10
PSAM, 561
PSK, 8, 9, 13, 15, 123-92
Q2PSK, 13, 15, 498-514
QAM, 9, 13, 15, 411-57
QBL, 459, 465-71
QORC, 13, 459, 471-77
QOSRC, 13, 460, 471-77
QPSK, 9, 13, 154-70
scheme overview, 12-15
SHPM, 13
SMSK, 13, 195, 219-31
SQAM, 13, 490-98
SQORC, 13, 459, 471-77
system complexity, 11-12
TFM, 13, 263, 460
tree, 14
TSI-OQPSK, 13, 478-90
XPSK, 13

Modulation index
defined, 260
effect, 276-77

Modulators
pi/4-QPSK, 170-71
all-digital, 295-97
BPR-limiter, 294-95
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Modulators (continued)
BPSK, 126
coherent FSK, 89
CPM, 286-97
DBPSK, 131
differential QPSK, 163
FM, 286
GMSK, 342-43
MAM, 418-21
MFSK, 108
MHPM, 382
MPSK, 138-39
MSK, 207-10
noncoherent FSK, 88
noncoherent MFSK, 104-7
OQPSK, 168
PLL, 292-93
Q2PSK, 499, 508-9
QAM, 434-36
QPSK, 156, 158
quadrature, 286-92
serial, 292-95
SFSK, 238, 240
SMSK, 220, 221-23
two-symbol-period schemes, 461

Modulo-2 addition, 18, 447
MS43 code, 80
MSK-type demodulators, 326-30
MSK-type schemes, 231-36

defined, 234
demodulator, 235
error performance, 235
modulator, 235
signaling generation, 248
signals, 234-35
signal spectral main lobe, 254-56
symbol duration, 235
See also Minimum shift keying (MSK)

MSK-type synchronizer, 337-40
carrier, 399
carrier recovery, 339
defined, 337
illustrated, 338
phase-lock loops, 338
problems, 339-40
realization in VLSI, 340
signal dropout problem, 340
symbol, 399

Multi-h phase modulation (MHPM), 13, 351-408
1REC See also 1REC MHPM
3RC See also 3RC MHPM
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Multi-h phase modulation (MHPM) (continued)
application, in fading channels, 351
with asymmetrical modulation indexes, 400
asymptotic coding gain, 364
autocorrelation function, 362
bandwidth efficiency, 376-77
branch metrics, 389
carrier phase synchronization, 398-99
carrier synchronization, 388-92
correlatively encoded signaling techniques, 401-3
CPFSK schemes, 351
cumulate phase, 353
data detection, 392-93
defined, 351
demodulator, 382-92
distance properties, 366-81
error performance, 15
error probability, 368
frequency pulse, 352
full-response, 360, 362
with high coding gain over MSK, 375
improved, schemes, 399-403
index, 352, 354, 360
instant phase, 352
joint carrier phase tracking, 392-93
joint demodulation, 388-92
M-ary, 360, 362, 393-98
maximum increase of bounds, 369
modulator, 382
multi-T realization, 401
nonlinear, 403
partial response, 360, 366, 402
phase, 352
phase characteristic, 399
phase trees, 354
phase trellis, 355-56, 358-59
PSD, 361-66
PSD illustration, 367
receiver, 389
signal, 351-52
spectra decay, 364
superbaud period, 398-99
symbol-timing synchronization, 398-99
synchronization, 398-99
synchronizers, 400
total phase, 353
total phase states, 357
upper bounds, 369
upper bounds summary, 370

Multipath diversity, 562
Multipath interference, 7
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Multipath signals, 517
Multiple index continuous phase modulation (MHPM), 259
Multi-T phase codes, 401

N
Nakagami distribution, 526-27
Noncoherent detection, 615
Noncoherent FSK

bandwidth, 101
defined, 87
demodulation, 98-101
demodulator: bandpass filter implementation, 100
demodulator: correlator implementation, 99
demodulator: matched filter implementation, 99
error performance, 119
modulator, 88
orthogonal signals, 101
received signal, 98
See also Frequency shift keying (FSK)

Noncoherent MFSK
demodulator: correlator-squarer implementation, 113
demodulator: matched filter-envelope detector implementation, 115
demodulator: matched filter-squarer detector implementation, 114
modulator, 104-7
symbol error probability, 113-14
See also M-ary FSK

Nonconstant-envelope bandwidth-efficient modulations, 459-515
Nonlinear multi-h CPFSK, 403
Nonreturn-to-zero codes (NRZ) codes, 22, 25, 82

bandwidth, 34
BER, 46-48
dicode, 26, 36
efficiency, 63
NRZ-L, 7-8, 25, 30, 46-47
NRZ-M, 25, 30, 47-48
NRZ-S, 25, 30, 47-48
polar, 31
PSD, 30-34
PSD illustration, 32
unipolar, 31, 47
See also Line codes

Normalized Euclidean distance, 366-68, 372
Null-to-null bandwidth efficiency, 11
Numerically controlled oscillator (NCO), 295

elements, 295
sensitivity, 296

Nyquist bandwidth efficiency, 11
Nyquist filter, 165

O
Observation space, 589
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Odd half-wave symmetry, 276, 586
Offset QPSK (OQPSK), 13, 167-70

defined, 167
demodulator, 168
fractional out-of-band power, 206
I-/Q-channel data, 478
modulator, 168
MSK as sinusoidal weighted, 196-201
null-to-null bandwidth, 204
as set of time/phase-shifted AM pulses, 333
waveforms, 167, 169
See also Quadrature phase shift keying (QPSK)

On-off keying (OOK), 8, 13, 421-22
BER, 422
envelope, 421
preference, 422
PSD, 422
signal set, 421
symbol error probability, 422

Open-loop synthesizer, 183-84
Optimum binary receiver, 601
Optimum ML coherent demodulator, 297-301

complexity reduction, 334
defined, 297
error probability, 299, 301
illustrated, 300
M likelihoods, 299
receiver, 298-99
See also Demodulators

Optimum ML noncoherent demodulator, 301-11
complexity reduction, 334
defined, 301
error probability, 306
illustrated, 307
structure, 306, 307
See also Demodulators

OQPSK-type demodulator, 459
Orthogonal MFSK, 110, 111, 112, 116, 117
Orthonormal functions, 405-7, 609

P
PAM-PPM code, 73-74, 75
Parallel MSK (PMSK), 222, 223, 326

bit error probability, 330, 332
eye pattern, 329
filter, 328
with phase and timing errors, 330
receiver for binary CPM, 329
receiver replacement, 327-28
structure, 327
See also Minimum shift keying (MSK)
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Parseval's theorem, 600, 610, 616
Path metrics, 312
PCM waveforms, 17
Percentage bandwidth efficiency, 11
PFmB(m+1)B codes, 77-78

block synchronization, 78
defined, 77
stages, 77-78
See also Block codes

Phase function, 260
Phase lock loop (PLL), 180, 338, 392

bandwidth, 339
modulator, 292-93

Phase rotation network (PRN), 391
Phase shift keying (PSK), 8, 123-92

carrier recovery, 179-83
clock recovery, 183-85
constant envelope, 13
defined, 9, 123
phase and timing error effects, 186-87
scheme comparison, 189
summary, 187-90
synchronization, 179-87
types of, 123

Phase trees
2REC receiver, 320, 321
3RC transmitter, 320, 321
CPM, 269-70
MHPM, 354
MSK, 200, 201

Phase trellis
constraint length, 360
CPM, 270, 271
M-ary multi-h CPFSK, 393
MHPM, 355-56, 358-59
MSK, 201, 202
periods, 360

Pilot symbol assisted modulation (PSAM), 561
PLL modulator, 292-93

impulse response, 293
problem, 293
Poisson sum formula, 29, 574-75
Polarization diversity, 562
Polar RZ

BER, 48
defined, 26
PSD, 34
See also Return-to-zero codes

Post-separation demodulator, 461-62
Power efficiency, 10
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Power spectral densities (PSDs), 4, 10, 567-86
ASK, 11, 577
bandpass signal, 92, 567-69
bandpass stationary random process and, 569-72
biphase codes, 37-40
BPSK, 127-29
CPFSK, 277-79
CPM, 272-79, 580-86
DBPSK, 135, 136
DEBPSK, 153-54
delay modulation, 40-43
digital bandpass signals, 577-79
digital signals, 572-77
FSK, 92-94
general formula, 29
GMSK, 342, 343
line codes, 28-43
MAM, 412-13
MFSK, 103-4, 105, 106
MHPM, 361-66
MPSK, 146-48
MSK, 203-4
NRZ codes, 30-34
OOK, 422
pseudoternary codes, 35-37
QAM, 432-34
QBL, 468, 469
QORC, 473
QOSRC, 474, 475
QPSK, 160
Rayleigh envelope, 524
RZ codes, 34-35
SFSK, 238-39
SQAM, 490, 492
SQORC, 473
star QAM, 558
substitution line codes, 61
TSI-OQPSK, 482-83

Predetection and postdetection coherent equal gain combining, 563
Predetection and postdetection maximal ratio combining, 563
Predetection selective combining, 563
Predetection switched combining, 563
Priori probability, 44
Probabilistic transition mechanism, 589
Pseudoternary codes, 26, 82

BER, 49-54
PSD, 35-37

Pulse amplitude modulation (PAM), 412
decision regions, 415
error probability, 414, 416
signal set, 414
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Pulse amplitude modulation (PAM) (continued)
thresholds, 415

Pulse code modulation (PCM), 17

Q
Quadrature amplitude modulation (QAM), 9, 13, 259, 411-57

16-QAM, 411, 434, 435
32-QAM, 429
128-QAM, 411
average amplitude, 424
average power, 424
average signal energy, 424, 426
carrier recovery, 441-42
circular, 441
constellation design consideration, 427
constellation illustrations, 428
constellations, 426-32
defined, 411, 422
demodulator, 436-38
differential coding in, 448-54
digital synthesis techniques for, 434-36
envelope, 424, 432
error probability, 438-41
in fading channels, 554-60
fixed-link, 444
modulator, 434-36
MPSK inferiority to, 418, 439
nonconstant envelope, 15
on time axis, 432
phasor magnitude, 426
power savings, 441
PSD, 432-34
pulse shaping in, 422
schemes, 411
signal description, 422-26
square, 429-32
star, 558-60
superposed (SQAM), 460
symmetrical, 442, 443
synchronization, 441-48
times-four carrier recovery loop, 445
type I, II, III constellations, 425, 426-27
use of, 15, 411

Quadrature modulators, 286-92
defined, 286-87
with phase state ROM, 291

Quadrature overlapped raised cosine modulation (QORC), 13, 459, 471-77
amplitude, 472
envelopes for, 472
error performance, 474-75
eye patterns, 471
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Quadrature overlapped raised cosine modulation (QORC) (continued)
PSD, 473
pulse shapes, 471
symbol error probability, 476

Quadrature overlapped squared raised cosine modulation (QOSRC), 13, 460, 471-77
amplitude formula, 472
envelopes, 473
eye patterns, 471
PSDs, 474, 475
pulse shapes, 471
signal energy, 477
symbol error probability, 477

Quadrature phase shift keying (QPSK), 9, 13, 154-70
Costas loop, 182, 183
crosscorrelated (XPSK), 460
data bits, 155
demodulator, 156, 158
demodulator bit error probability, 159
differential (DQPSK), 160-67
fractional out-of-band power, 206
irreducible BER performance for, 540
level generator, 139
linear PSD, 162
logarithmic PSD, 162
modulator, 156, 158
null-to-null bandwidth, 204
offset (OQPSK), 167-70
out-of-band power PSD, 162
out-of-band to total power ratio, 493
Pb, 160, 161
PSD, 160
in Rician fading channel, 535
signal constellation, 156
signal coordinates, 155
symbol interval, 156
waveforms, 155-56, 157
See also M-ary PSK (MPSK)

Quadrature quadrature phase shift keying (Q2PSK), 13, 498-514
amplitudes, 501
autocorrelation, 502
bandwidth efficiency, 502, 512
basis, 15
basis signals, 498
bit error probability, 503, 505, 511
bit rate, 499
complex envelope, 501
constant envelope, 508, 510, 511, 513
defined, 498
demodulator, 503-5
error performance, 505-6
fractional out-of-band power, 504
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Quadrature quadrature phase shift keying (Q2PSK) (continued)
generalized signaling format, 513
modulated signal, 499-500
modulator, 499, 508-9
PSDs, 500-503
pulses, 502
pulse-shaping functions, 498
signal set, 498
synchronization, 506-8
synchronization block diagram, 508
transmitter filter pairs, 514
uncoded, Euclidean distance, 509-10
uncoded, synchronization, 511-12

Quadrature receiver, 313
Quasi-bandlimited modulation (QBL), 459, 465-71

3-amplitude pulse, 466
in AWGN channel, 470
defined, 465
envelopes, 467
hard limiter, 467
implementation, 467
out-of-band to total power ratio, 493
power efficiency losses, 468, 469
PSDs, 468, 469
pulse duration, 465
signal, 466
spectral analysis, 467
symbol error probability, 470

R
Rabzel and pasupathy's symbol-shaping pulses, 247-50

amplitude pulse generation, 253
baseband, 249-50
defined, 247
fractional out-of-band powers, 251, 252
frequency-shaping, 248
illustrated, 249
in-phase, 250
See also Symbol-shaping pulses

Raised cosine pulse of length L (LRC), 13
1RC differential detection, 335
1RC discriminator detection, 336
3RC minimum distance, 287
3RC states/phases, 269
3RC state trellis, 273
3RC transmitter phase tree, 320, 321
defined, 262
illustrated, 264
power-bandwidth trade-off, 289
PSDs, 279, 280
upper bound, 288
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Rayleigh distribution, 524
Rayleigh envelope

ac power, 525
average power, 525
CDF, 525
mean value, 525
PSD, 524

Rayleigh fading channel, 527-31
1REC-MHPM performance in, 552, 553
for pi/4-DQPSK, 530-31
chi-square distribution, 528
for coherent binary FSK, 530
for coherent BPSK/QPSK/OQPSK/ MSK, 529
Doppler shift and, 551
for GMSK, 530
for noncoherent orthogonal BFSK, 530
for optimum differential BPSK, 529-30

Rayleigh distribution, 527
See also Fading channels

Rectangular pulse of length L (LREC), 13, 261-62
1REC MHPM, 353, 362, 371-73, 376-79
2REC, receiver phase tree, 320, 321
defined, 261
illustrated, 264
phase pulse, 320
reduction of number of filters for, 320-25

Reduced-complexity Viterbi demodulator, 317-20
Return-to-zero codes, 22, 25-26, 82

bandwidth, 25, 35
BER, 48-49
dicode, 26, 36
polar, 26, 34, 48
PSD, 34-35
PSD illustration, 32
unipolar, 25-26, 34, 48-49
See also Line codes

Rician distribution, 525
average power, 526
density curves, 526

Rician fading channel, 531-33
1REC-MHPM performance in, 552, 553
pi/4-DQPSK in, 537
amplitude, 531-32
BFSK in, 535
BPSK in, 535
error performance, 533
error probabilities in, 532
GMSK in, 436
MSK comparison, 554
MSK in, 535
noncoherent orthogonal BFSK in, 534
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Rician fading channel (continued)
optimum DBPSK, 534

QPSK/OQPSK in, 535
See also Fading channels
Rms excess delay, 518

S
Schwartz's inequality, 603
Serial modulator, 292-95

BPF-limiter, 294-95
PLL, 292-93

Serial MSK (SMSK), 13, 195, 219-31, 326
advantages, 219
baseband conversion filter frequency response, 232
baseband implementation, 230-31
baseband matched filter frequency response, 233
bit error probability, 330, 332
conversion and matched filter implementation, 227-31
Costas loop, 234
critical components, 227
demodulator, 220, 223-27
description, 219-21
essence, 222-23
filters, 328, 330
local oscillation, 221
mixer output, 224
modulator, 220, 221-23
with phase and timing errors, 330
receiver for binary CPM, 330, 331
synchronization, 231
validity, in frequency-domain, 223
See also Minimum shift keying (MSK)

Serial-to-parallel (S/P) converter, 208
Signal detection, 589-625
Signal-to-noise ratio (SNR), 283

average, per symbol, 438
high, 283, 284, 306
loop, 397
low, 555
matched filter maximizes, 602-3

Simon's symbol-shaping pulses, 240-46
amplitude, 244, 245
fractional out-of-band behavior, 246
frequency derivation, 245
illustrated, 245
polynomial-type, 243
pulse functions, 243, 244
shapes, 243-44
spectra, 244
See also Symbol-shaping pulses

Sinc function, 31
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Single-h phase modulation (SHPM), 13
Sinusoidal FSK (SFSK), 236-40

continuous phase, 237
defined, 236
demodulator, 240
double (DSFSK), 253, 254
envelope, 236
error performance, 240
frequency derivation, 237
modulator, 238, 240
PSD, 238-39
signal, 237

Slow fading channel, 522-23
Space diversity, 561-62
Spectrally raised cosine pulse of length L (LSRC), 13

defined, 262
illustrated, 264

Square QAM, 429-32
average energy, 431
BERs, 556-57, 560
bit error probability, 440
carrier synchronization, 441
coherent demodulator for, 438
differential coding, 448-54
differential coding examples, 452
differential encoding penalty, 454
differentially-coded, error probability, 452
distance between phasors, 431
in fading channels, 555-58
Gray coding, 434, 435
illustrated, 430
M-ary, 434
phase ambiguities, 448
phasor magnitude, 431
phasors, 429
PSD, 432
in slow, flat Rayleigh fading channel, 556
in slow, flat Rician fading channel, 556-57
subgroups, 446
symbol error probability, 438-39
See also Quadrature amplitude modulation (QAM)

Squaring loop synchronizer, 340-41
defined, 340
illustrated, 341

Stack algorithm, 334
Staggered QORC (SQORC), 13, 459, 471-77

amplitude, 472
envelopes, 473
error performance, 474-75
eye patterns, 471
PSD, 473
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Staggered QORC (SQORC) (continued)
pulse shapes, 471
symbol error probability, 476

Star QAM, 558-60
average power, 558
BER, 560
differential coding, 558
Gray coded phase changes, 559
PSD, 558
signal points, 558
See also Quadrature amplitude modulation (QAM)

State trellis, 270-72
branch metric, 312
defined, 270
illustrated, 273
M branches, 311
number of branches, 312
phase trellis vs., 271
Viterbi demodulator, 353

Substitution line codes, 57-62, 83
BNZS, 58-60
CHDBn, 60
HDBn, 60-62
illustrated, 59, 60
PSDs, 61
types of, 57
See also Line codes

Sunde's FSK signal, 215
Superbaud period, 398-99
Superposed-QAM (SQAM), 13, 460, 490-98

amplitudes, 491
defined, 490
degradation, 496, 497
demodulator, 494
error performance, 490-94, 495
eye patterns, 491
normalized PSD expression, 490
out-of-band to total power ratio, 493
PSDs, 490, 492
pulse shapes, 491
QPSK performance comparison, 494
signal energy, 494
symbol error probability, 496-98

Surface acoustic wave (SAW) devices, 229
Symbol function, 573
Symbol-shaping pulses, 240-54

Bazin's, 250-54
common points, 256
Rabzel and Pasupathy's, 247-50
Simon's, 240-46

Symbol synchronization, 186, 190
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Symbol timing, 121
Symmetrical QAM, 442, 443
Synchronization

AMI code, 57
carrier, 179, 388-92, 393-98
carrier-phase, 398-99
CPM, 337-42
FSK, 121
imperfect, 187
MHPM, 398-99
MSK, 214-15
PSK, 179-87
Q2PSK, 506-8
QAM, 441-48
SMSK, 231
superbaud, 398-99
symbol, 186, 190, 393-98
symbol-timing, 398-99
two-symbol-period schemes, 465

Synchronizers
fourth-power loop, 340-41
MAP symbol, 341-42
MHPM, 400
MSK-type, 337-40, 399
squaring loop, 340-41

System complexity, 11-12

T
Tamed frequency modulation (TFM), 13, 460

defined, 263
illustrated, 264

Threshold, 592
Time diversity, 562
Timing error, 186-87

Transfer function, 513
conversion filter, 229
GMSK, 342
loop, 181
low-pass equivalent matched filter, 227

Transparent tone in band (TTIB), 561
Traveling wave tube amplifier (TWTA), 12, 15
Twinned binary, 26
Two-symbol-interval OQPSK (TSI-OQPSK), 13

amplitudes, 482
defined, 478-80, 480
degradation, 486, 487, 488
degradation vs. fade depth, 489-90
error performance, 485
eye patterns, 482
nonlinearly amplified PSDs, 484
odd and even functions, 481
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Two-symbol-interval OQPSK (TSI-OQPSK) (continued)
PSDs, 482-83
pulses, 481
signal energy, 484
spectral advantages, 485
symbol error probability, 485
See also Offset QPSK

Two-symbol-period schemes, 460-65
bit error probability, 465
correlation detector, 463
modulators, 461
post-separation demodulator, 461-62
symbol error probability, 464
synchronization, 465

U
Unconditional likelihood, 616
Unipolar RZ

BER, 48-49
defined, 26-27
PSD, 34
See also Return-to-zero codes

V
Viterbi algorithm, 260, 285, 392

for binary partial response CPM, 333
branch metrics and, 312
complexity, 317
efficiency, 314
for partial response CPM case, 316
references, 316
search time, 316

Viterbi decoder, 394, 397
Viterbi demodulator, 311-17

branch metric, 387
defined, 311
error probability, 317
implementation limitation, 317
modified, 317
reduced-complexity, 317-20
state trellis, 353

Viterbi estimates, 392
Voltage-controlled oscillators (VCOs)

adjustment, 447
amplitude, 447
control voltage, 286
implementation, 286
phase error, 447

W
White Gaussian noise, 597, 608, 615
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Wiener-Khinchine theorem, 4, 572  
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